диаметр 300мм какая длина окружности
Калькулятор длины окружности
Скачать, сохранить результат
Выберите способ сохранения
Информация
Длина окружности находится очень просто, но, тем не менее, это является основой геометрии и изучается еще средней школе. Формула длины окружности имеет следующий вид:
P=2πr,
где P – длина окружности;
π – константа, которая всегда равна 3,14;
r – радиус окружности, длину которой необходимо найти.
Однако, существует еще одна формула и наш калькулятор длины окружности также её использует. Данная формула имеет следующий вид:
P=πd, где
P – длина окружности;
π– константа, которая всегда ровна 3,14;
d – диаметр окружности, длину которой необходимо найти.
Разница между формулами в том, что в первой длина окружности находится через радиус, который умножается на два, а во второй используется сразу диаметр.
Данные формулы применяются в многих сферах жизни человека. От производства каких-либо товаров, до строительства небоскребов. Лица, ответственные за проектирование зданий несут огромную ответственность за верность их расчетов, которые буквально влияют на человеческие жизни и их сохранность. Для того, чтобы избежать человеческого фактора в процессе расчета точных показателей, был создан онлайн калькулятор, в котором легко находится длина окружности через радиус или диаметр.
Благодаря данному инструменту Вы сможете не только получить информацию о том, как найти длину окружности, но и рассчитать её без каких-либо усилий. Калькулятор гарантирует предельную точность расчетов и Вам не нужно задаваться как узнать верны ли расчеты. На сайте показаны формулы, по которым считает калькулятор и это подтверждает то, что любой расчет будет верным.
Длина окружности.
Как найти длину окружности? Найдите длину окружности по радиусу или диаметру заполнив поля в калькуляторе ниже.
Длина окружности равна 2ПиR
1. Сложнее найти длину окружности через диаметр, по этому сначала разберём этот вариант.
Пример: Найдите длину окружности диаметр которой равен 6 см. Мы используем приведённую выше формулу длины окружности, только сначала нам необходимо найти радиус. Для этого мы делим диаметр 6 см на 2 и получаем радиус окружности 3 см.
После этого всё предельно просто: Умножаем число Пи на 2 и на полученный радиус в 3 см.
2 * 3,14 * 3 см = 6,28 * 3см = 18,84 см.
2. А теперь ещё раз разберём простой вариант найдите длину окружности радиус равен 5 см
Решение: Радиус 5 см умножаем на 2 и умножаем на 3,14. Не пугайтесь, ведь перестановка местами множителей не влияет на результат, и формулу длины окружности можно применять в любой последовательности.
Онлайн калькулятор длины окружности
Наш калькулятор длины окружности произведёт все эти не хитрые вычисления мгновенно и распишет решение в строку и с комментариями. Мы рассчитаем длину окружности для радиуса 3, 5, 6, 8 или 1 см, или диаметр равен 4, 10, 15, 20 дм, нашему калькулятору без разницы для какого значения радиуса найти длину окружности.
Все вычисления будут точными, оттестированными специалистами математиками. Результаты можно использовать в решении школьных задач по геометрии или математике, а также при рабочих расчётах в строительстве или в ремонте и отделке помещений, когда требуются точные вычисления по этой формуле.
Конвертер величин
Длина окружности и площадь круга
Этот калькулятор определяет длину окружности и площадь круга по известным радиусу или диаметру окружности.
Для расчета введите одну из величин: радиус, диметр, площадь или длину окружности и нажмите на кнопку Рассчитать для расчета остальных величин.
Определения и формулы
В геометрии окружностью называется совокупность точек на плоскости, которые находятся на одном расстоянии от точки, называемой центром окружности. Иными словами, окружность — это геометрическое место точек, находящихся в одной плоскости и равноудаленных от точки, называемой центром. Расстояние между любой точкой окружности до центра этой окружности называется радиусом. Мы привыкли видеть окружность в форме круглой линии или круга. Однако так окружность выглядит только в евклидовой геометрии. В некоторых метрических пространствах, например, в чебышевском или манхэттенском пространстве окружности выглядят скорее квадратными.
Диаметр круга — это наибольший отрезок, соединяющий две точки на окружности. Или, точнее, это отрезок, соединяющий две точки окружности и проходящий через ее центр. Диаметр окружности равен ее удвоенному радиусу. Любой диаметр разделяет окружность, а точнее, круг, на две равные половины.
Говоря точным языком, окружность — это линия или замкнутая кривая, которая окружает часть плоскости, называемую кругом.
Длина окружности
Длина C окружности — это длина замкнутой плоской кривой, ограничивающей круг, то есть это расстояние, равное длине границы круга. Она измеряется в единицах длины. Если разделить длину любой окружности на ее диаметр D, получится число 3.14159265359… Это число — одна из самых важных констант в математике, которое обозначается греческой буквой пи ( π ):
где R — радиус окружности. Если решить это уравнение для длины окружности, мы получим формулу, которая всем нам знакома с детства:
Математическая константа π широко используется в многих формулах в математике, технике, архитектуре и строительстве. Несмотря на то, что число π известно с древних времен, греческой буквой пи его стали обозначать совсем недавно — с середины XVIII века. π — иррациональное и трансцендентное число. Это означает, что его нельзя точно представить в виде простой дроби и оно не является корнем любого многочлена с рациональными коэффициентами. Есть много чисел, которые являются иррациональными, но не являются трансцендентными. Например, √2 — иррациональное, но не трансцендентное число, так как оно является корнем уравнения x² — 2 = 0. Интересно отметить, что поскольку точное значение π определить невозможно, значит невозможно найти и точное значение длины окружности или площади любого круга.
Площадь круга
Поскольку TranslatorsCafe.com — сайт для переводчиков, в том числе с английского языка, вначале отметим, что в английском языке площадь круга не совсем корректно называется area of a circle, что буквально означает «площадь окружности», то есть площадь кривой линии (окружность — это кривая!), а, как известно, у линии не может быть площади. Но ничего, так уж сложилось и англоговорящие люди привыкли к этой неточности.
Итак, площадь A круга, то есть части плоскости, лежащей внутри окружности радиуса R, равна произведению числа π на квадрат радиуса:
Во многих других языках, в том числе и в русском, такой путаницы в терминах «круг» и «окружность» нет. Впрочем, она есть в других терминах. Площадь круга можно также описать как число единичных квадратов, которые покрывают круг, лежащий внутри окружности.
Окружности в архитектуре
Окружность — весьма совершенная форма, потому что каждая точка окружности находится на одном и том же расстоянии от ее центра. Как и другие совершенные формы, окружность часто используют архитекторы. Круг и окружность широко применяются в архитектуре, и это при том, что круглые здания строить труднее, чем здания прямоугольной формы. Поэтому для постройки круглых зданий всегда была нужна особая мотивация. Возможно, что самая серьезная мотивация была религиозной. Окружности и сферы можно найти практически в любой культуре, религии или системе верований в качестве магических знаков или символов. Многие культовые здания и сооружения являются окружностями в плане — например, буддийские ступы в форме полусферы или Стоунхендж.
Архитекторы считают окружность и сферу самыми совершенными из всех геометрических форм. Покрытия зданий в форме верхней части сферы, то есть купола, широко применяются в архитектуре и бывают различных форм и размеров. Они могут быть полусферическими или заостренной на вершине формы, или с конусным верхом, который можно увидеть в исламской архитектуре. Они могут иметь совершенную сферическую форму, как римские и византийские купола или могут плавно заостряться на вершине, и тогда купол становится похожим на луковицу, как в православных храмах или в архитектурных стилях Великих Моголов.
Окружность в технике
Невозможно представить себе технику без колес и других деталей в форме окружности. Некоторые из них (например, шасси самолетов и колеса автомобилей) хорошо видны. Другие спрятаны в компьютерах, стиральных и посудомоечных машинах, холодильниках, турбинах и другом оборудовании.
Окружности в сельском хозяйстве
Пролетая над пустынями, в которых ничего не растет, мы часто видим зеленые круги. Это поля, которые имеют такую форму из-за того, что фермеры используют системы кругового орошения с центральной осью, вокруг которой вращается оросительное устройство.
Вас могут заинтересовать и другие калькуляторы из группы «Математика»:
Математика
На этих страницах размещены конвертеры единиц измерения, позволяющие быстро и точно перевести значения из одних единиц в другие, а также из одной системы единиц в другую. Конвертеры пригодятся инженерам, переводчикам и всем, кто работает с разными единицами измерения.
Мы работаем над обеспечением точности конвертеров и калькуляторов TranslatorsCafe.com, однако мы не можем гарантировать, что они не содержат ошибок и неточностей. Вся информация предоставляется «как есть», без каких-либо гарантий. Условия.
Если вы заметили неточность в расчётах или ошибку в тексте, или вам необходим другой конвертер для перевода из одной единицы измерения в другую, которого нет на нашем сайте — напишите нам!
Длина окружности
Окружностью называется ряд равноудалённых точек от одной точки, которая, в свою очередь, является центром этой окружности. Окружность имеет также свой радиус, равный расстоянию этих точек от центра.
Отношение длины, какой либо окружности к её диаметру, для всех окружностей одинаково. Это отношение есть число, являющееся математической константой, которое обозначается греческой буквой π.
Определение длины окружности
Формула расчёта длинны окружности
Произвести расчёт окружности можно по следующей формуле:
r – радиус окружности
D – диаметр окружности
L – длина окружности
Пример нахождения длинны окружности
Вычислить длину окружности, имеющей радиус 10 сантиметров.
Формула для вычисления дины окружности имеет вид:
Таким образом, длина окружности, имеющей радиус 10 сантиметров равна:
L = 2 × 3,14 × 10 = 31,4 сантиметра
Окружность представляет собой геометрическую фигуру, являющуюся совокупностью всех точек на плоскости, удаленных от заданной точки, которая называется ее центром, на некоторое расстояние, не равное нулю и именуемое радиусом. Определять ее длину с различной степенью точности ученые умели уже в глубокой древности: историки науки считают, что первая формула для вычисления длины окружности была составлена примерно в 1900 году до нашей эры в древнем Вавилоне.
С такими геометрическими фигурами, как окружности, мы сталкиваемся ежедневно и повсеместно. Именно ее форму имеет внешняя поверхность колес, которыми оснащаются различные транспортные средства. Эта деталь, несмотря на свою внешнюю простоту и незатейливость, считаются одним из величайших изобретений человечества, причем интересно, что аборигены Австралии и американские индейцы вплоть до прихода европейцев совершенно не имели понятия о том, что это такое.
По всей вероятности, самые первые колеса представляли собой отрезки бревен, которые насаживались на ось. Постепенно конструкция колеса совершенствовалась, их конструкция становилась все более и более сложной, а для их изготовления требовалось использовать массу различных инструментов. Сначала появились колеса, состоящие из деревянного обода и спиц, а затем, для того, чтобы уменьшить износ их внешней поверхности, ее стали обивать металлическими полосами. Для того чтобы определить длины этих элементов, и требуется использовать формулу расчета длины окружности (хотя на практике, вероятнее всего, мастера это делали «на глаз» или просто опоясывая колесо полосой и отрезая требуемый ее участок).
Следует заметить, что колесо используется отнюдь не только в транспортных средствах. Например, его форму имеет гончарный круг, а также элементы шестеренок зубчатых передач, широко применяемых в технике. Издавна колеса использовались в конструкциях водяных мельниц (самые древние из известных ученым сооружений такого рода строились в Месопотамии), а также прялок, применявшихся для изготовления нитей из шерсти животных и растительных волокон.
Окружности нередко можно встретить и в строительстве. Их форму имеют достаточно широко распространенные круглые окна, очень характерные для романского архитектурного стиля. Изготовление этих конструкций – дело весьма непростое и требует высокого мастерства, а также наличия специального инструмента. Одной из разновидностей круглых окон являются иллюминаторы, устанавливаемые в морских и воздушных судах.
Таким образом, решать задачу определения длины окружности часто приходится инженерам-конструкторам, разрабатывающим различные машины, механизмы и агрегаты, а также архитекторам и проектировщикам. Поскольку число π, необходимое для этого, является бесконечным, то с абсолютной точностью определить этот параметр не представляется возможным, и поэтому при вычислениях учитывается та ее степень, которая в том или ином конкретном случае является необходимой и достаточной.
Нахождение длины окружности: формула и задачи
В данной публикации мы рассмотрим, каким образом можно посчитать длину/периметр окружности (круга) и разберем примеры решения задач.
Формула вычисления длины/периметра
1. Через радиус
Периметр круга или длина окружности (C) равняется удвоенному произведению ее радиуса на число π :
C = 2 * π * r
Радиус (r) – это отрезок, который соединяет центр окружности и любую точку на ней.
2. Через диаметр
Периметр/длина окружности считается как произведение ее диаметра на число π :
C = π * d
Диаметр (d) равен двум радиусам (d=2r). Это отрезок, соединяющий две противоположные точки на окружности.
Примечание: в расчетах значение числа π округляется до 3,14.
Примеры задач
Задание 1
Найдите длину окружности, если ее радиус равен 12 см.
Решение:
Воспользуемся первой формулой, в которой участвует значение радиуса: C = 2 * 3,14 * 12 см = 75,36 см.
Задание 2
Найдите периметр круга, если ее диаметр составляет 15 см.
Решение:
Применим формулу, в которой используется диаметр: C = 3,14 * 15 см = 47,1 см.












