для диагностики какого заболевания используется данный медицинский прибор
Виды лучевой диагностики заболеваний и как проводится
Лучевая диагностика массово применяется как при соматических заболеваниях, так и в стоматологии. В РФ ежегодно выполняется более 115 миллионов рентгенологических исследований, более 70 миллионов ультразвуковых и более 3-х миллионов радионуклидных исследований.
Что это такое?
Технология лучевой диагностики является практической дисциплиной, изучающей воздействия разных типов излучения на человеческий организм. Ее цель – выявлять скрытые заболевания, путем исследования морфологии и функций здоровых органов, а также имеющих патологии, включая все системы жизнедеятельности человека.
Недостаток: угроза нежелательного радиационного облучения пациента и медицинского персонала.
Методы и методики
Рентгенологическое исследование, в основе которого лежит метод создания рентгеновского снимка внутренних органов человека подразделяется на:
В данном исследовании важно провести качественную оценку рентгенограммы больного и правильно рассчитать дозовую нагрузку излучения на пациента.
Ультразвуковое исследование, в ходе которого формируется ультразвуковое изображение, включает анализ морфологии и систем жизнедеятельности человека. Помогает выявить воспаления, патологии и другие отклонения в организме исследуемого.
Исследование на основе компьютерной томографии, в ходе которого с помощью сканера формируется КТ-изображение, включает такие принципы сканирования:
Магнитно-резонансное исследование (МРТ) включает следующие методики:
Радионуклидное исследование предполагает применение радиоактивных изотопов, радионуклидов и подразделяется на:
Фотогалерея
Рентгенодиагностика
Рентгенодиагностика распознает заболевания и повреждения в органах и системах жизнедеятельности человека опираясь на изучение рентгеновских снимков. Метод позволяет обнаружить развитие заболеваний, определяя степени поражения органов. Предоставляет информацию об общем состоянии пациентов.
В медицине рентгеноскопию используют для исследования состояния органов, процессы работы. Дает информацию о расположении внутренних органов и помогает выявить патологические процессы происходящие в них.
Также следует отметить следующие методы лучевой диагностики:
Радионуклидная диагностика
Радионуклидная диагностика предполагает регистрацию излучений искусственно введенного в организм радиоактивного вещества (радиофармпрепараты). Способствует изучению человеческого организма в целом, а также его клеточного метаболизма. Является важным этапом выявления онкологических заболеваний. Определяет активность клеток пораженных раком, процессы болезни, помогая оценивать методы лечения рака, предотвращая рецидивы заболевания.
Методика позволяет вовремя обнаруживать формирование злокачественных новообразований на ранних стадиях. Способствует уменьшению процента смертности от рака, сокращая число случаев рецидива у больных онкологией.
Ультразвуковая диагностика
Ультразвуковой диагностикой (УЗИ) называют процесс основанный на малоинвазивном методе исследований человеческого организма. Его суть состоит в особенностях звуковой волны, ее способности отражаться от поверхностей внутренних органов. Относится к современным и наиболее продвинутым методам исследования.
Особенности ультразвукового исследования:
Магнитно-резонансная томография
Метод основывается на свойствах атомного ядра. Оказываясь внутри магнитного поля атомы излучают энергию имеющую определенную частоту. В медицинском исследовании зачастую применяют резонанс излучения ядра атома водорода. Степень интенсивности сигнала напрямую связано с процентным соотношением воды в тканях исследуемого органа. Компьютер трансформирует резонансное излучение в высококонтрастный томографический снимок.
МРТ выделяется на фоне других методик, способностью предоставлять информацию не только структурных изменений, но и локального химического состояния организма. Этот тип исследования не инвазивен и несвязан с применением ионизирующего облучения.
Термография
Метод включает регистрацию видимых изображений теплового поля в человеческом теле, излучающего инфракрасный импульс, который может быть считан непосредственно. Или показан на экране компьютера в виде теплового образа. Полученную таким путем картинку называют термограммой.
Термографию отличает высокая точность измерений. Она дает возможность определять разность температур в организме человека до 0,09%. Эта разность возникает в результате перемен в кровообращении внутри тканей тела. При низкой температуре можно говорить о нарушении кровотока. Высокая температура – симптом воспалительного процесса в организме.
СВЧ-термометрия
Радиотермометрией (СВЧ-термометрией) называется процесс измерения температур в тканях и внутри органов тела на основе их собственного излучения. Врачи производят измерения температуры внутри тканевого столба, на определенной глубине при помощи микроволновых радиометров. Когда установлена температура кожи в конкретном отделе, далее вычисляется температура глубины столба. То же самое происходит при регистрации температуры волн разной длины.
Эффективность метода заключается в том, что температура глубинной ткани в основном стабильна, однако быстро изменяется при воздействии медикаментозными средствами. Допустим если применять сосудорасширяющие препараты. На основе полученных данных можно проводить фундаментальные исследования заболеваний сосудов и тканей. И добиться снижения уровня заболеваний.
Магнитно-резонансная спектрометрия
Магнитно-резонансной спектроскопией (МР-спектрометрией) называется не инвазивный метод исследования метаболизма головного мозга. В основе протонной спектрометрии лежит изменение частот резонанса протонных связей, что находятся в составе разных хим. соединений.
МР-спектроскопия используется в процессе исследования онкологий. На основе полученных данных можно прослеживать рост новообразований, с дальнейшим поиском решений по их устранению.
Клиническая практика использует МР-спектрометрию:
Для сложных случаев спектрометрия является дополнительной опцией при дифференциальных диагностиках вместе с получением перфузийно-взвешеного изображения.
Еще один нюанс при использовании МР-спектрометрии состоит в разграничении выявленного первичного и вторичного поражения тканей. Дифференциация последних с процессами инфекционного воздействия. Особенно важна диагностика абсцессивов в головном мозге на основании диффузионно-взвешенного анализа.
Интервенционная радиология
Лечение при помощи интервенционной радиологии основано на применении катетера и прочего малотравматичного инструментария вместе с использованием локальной анестезии.
По методам воздействия на черезкожные доступы интервенционная радиология разделяется на:
ИН-радиология выявляет степень заболевания, проводит пункционные биопсии, опираясь на гистологические исследования. Непосредственно связана с черезкожными безоперационными методами лечения.
Для лечения онкологий с применением интервенционной радиологии используют локальную анестезию. Далее происходит инъекционное проникновение в паховую область через артерии. Затем в новообразование вводят лекарство или изолирующие частицы.
Устранение закупоренности сосудов, всех кроме сердечных проводится при помощи балионной ангеопластики. То же касается лечения аневризм, посредством освобождения вен, осуществляя ввод лекарства через пораженную область. Что в дальнейшем ведет к исчезновению варикозных уплотнений и других новообразований.
Это видео расскажет подробнее о средостении в рентгеновском изображении. Видео снято каналом: Секреты КТ и МРТ.
Виды и применение рентгеноконтрастных препаратов в лучевой диагностике
В ряде случаев необходимо визуализировать анатомические структуры и органы, неразличимые на обзорных рентгенограммах. Для исследования в такой ситуации применяют метод создания искусственного контраста. Для этого, в область, которую необходимо исследовать, вводят специальное вещество, увеличивающее контрастность области на снимке. Подобного рода вещества имеют способность усиленно поглощать или наоборот уменьшать поглощение рентгеновского излучения.
Контрастные вещества разделяют на препараты:
Жирорастворимые рентген контрастные препараты создаются на базе растительных масел и используются в диагностике структуры полых органов:
Спирторастворимые вещества применяют для исследования:
Нерастворимые препараты создаются на основе бария. Их используют для перорального введения. Обычно с помощью таких препаратов исследуют составляющие пищеварительной системы. Сульфат бария принимают в виде порошка, водянистой суспензии или пасты.
К веществам с малым атомным весом относят уменьшающие поглощение рентгеновских лучей газообразные препараты. Обычно газы вводят для конкурирования рентгеновских лучей в полости тела или полые органы.
Вещества с большим атомным весом поглощают рентгеновское излучение и делятся на:
Водорастворимые вещества вводят внутривенно для лучевых исследований:
В каких случаях показана лучевая диагностика?
Ионизирующее излучение ежедневно используется в больницах и клиниках для проведения диагностических процедур визуализации. Обычно лучевая диагностика используется для назначения точного диагноза, выявления заболевания или травмы.
Назначить исследование вправе только квалифицированный врач. Однако существуют не только диагностические, но и профилактические рекомендации исследования. К примеру, женщинам старше сорока лет рекомендуется проходить профилактическую маммографию не реже, чем раз в два года. В учебных заведениях зачастую требуют ежегодно проходить флюорографию.
Противопоказания
Лучевая диагностика практически не имеет абсолютных противопоказаний. Полный запрет на диагностику возможен в отдельных случаях, если в теле пациента присутствуют металлические предметы (такие как имплантат, клипсы и т. п.). Вторым фактором, при котором процедура недопустима, является наличие кардиостимуляторов.
Относительные запреты на лучевую диагностику включают:
Где применяется лучевая диагностика
Лучевую диагностику широко используют для выявления заболеваний в следующих отраслях медицины:
Также лучевую диагностику проводят при:
В педиатрии
Существенным фактором, который может повлиять на результаты медицинского обследования является внедрение своевременной диагностики детских заболеваний.
Из важных факторов, ограничивающих рентгенографические исследования в педиатрии можно выделить:
Если говорить о важных методиках лучевых исследований, применение которых очень сильно повышает информативность процедуры, стоит выделить компьютерную томографию. Лучше всего в педиатрии использовать ультразвуковое исследование, а также магнитно-резонансную томографию, так как они полностью исключают опасность ионизирующего излучения.
Безопасный метод исследования детей это МРТ, в связи с хорошей возможностью применения тканевого контраста, а также многоплоскостных исследований.
Лучевое исследование детям может назначать только опытный педиатр.
В стоматологии
Нередко в стоматологии используют лучевую диагностику для обследования различных отклонений, к примеру:
Чаще всего в челюстно-лицевой диагностике применяют:
В кардиологии и неврологии
МСКТ или мультиспиральная компьютерная томография позволяет обследовать не только непосредственно сердце, но и коронарные сосуды.
Данное обследование является наиболее полным и позволяет выявить и своевременно диагностировать широкий спектр заболеваний, например:
Лучевая диагностика ссс (сердечно-сосудистой системы) позволяет оценить область закрытия просвета сосудов, выявить бляшки.
В неврологии также нашли применение лучевой диагностике. Пациенты с заболеваниями межпозвонковых дисков (грыжи и протрузии) получают более точные диагнозы, благодаря лучевой диагностике.
В травматологии и ортопедии
Наиболее распространённым методом лучевого исследования в травматологии и ортопедии является рентген.
Обследование позволяет выявить:
Наиболее действенные методы лучевой диагностики в травматологии и ортопедии:
Заболеваний органов дыхания
Наиболее применяемым методами обследования органов дыхания являются:
Реже применяют рентгеноскопию и линейную томографию.
На сегодняшний день допустима замена флюорографии на низкодозную КТ органов грудной клетки.
Рентгеноскопия при диагностике органов дыхания существенно ограничивается серьёзной лучевой нагрузкой на пациента, меньшей разрешающей способностью. Её проводят исключительно соответственно строгим показаниям, после проведения флюорографии и рентгенографии. Линейную томографию назначают только в случае невозможности провести КТ.
Обследование позволяет исключить или подтвердить такие заболевания, как:
В гастроэнтерологии
Лучевая диагностика желудочно-кишечного тракта (ЖКТ) проводится, как правило, с использованием рентгеноконтрастных препаратов.
Таким образом могут:
Иногда специалисты с помощью лучевой диагностики отслеживают и снимают на видео процесс глотания жидкой и твёрдой пищи, чтобы проанализировать и выявить патологии.
В урологии и неврологии
Сонография и УЗИ являются одними из самых распространённых методов обследования мочевыделительной системы. Обычно такие исследования позволяют исключить или диагностировать рак или кисту. Лучевая диагностика помогает визуализировать исследование, даёт больше информации, чем просто общение с больным и пальпация. Процедура занимает немного времени и безболезненна для пациента, при этом позволяет повысить точность диагноза.
При неотложных состояниях
Способом лучевого исследования можно выявить:
Лучевая диагностика при неотложных состояниях позволяет правильно оценить состояние больного и своевременно провести ревматологические процедуры.
При беременности
С помощью различных процедур возможна диагностика уже у плода.
Благодаря УЗИ и ЦДК есть возможность:
На данный момент лишь УЗИ из всех методов лучевой диагностики считается полностью безопасной процедурой при обследовании женщин в период беременности. Чтобы проводить любые другие диагностические исследования беременных, им обязательно иметь соответствующие медицинские показания. И в этом случае – самого факта беременности недостаточно. Если рентген или МРТ на сто процентов не подтверждены медицинскими показаниями, врач вынужден будет искать возможность перенести обследование на период после родов.
Мнение специалистов на этот счет сводится к тому, чтобы исследования КТ, МРТ или рентгеном не проводились в первый триместр беременности. Потому что в это время происходит процесс формирования плода и воздействия любых методов лучевой диагностики на состояние эмбриона до конца неизвестно.
Как правильно выбрать и пользоваться пульсоксиметром?
Пульсоксиметрию применяют при различных заболеваниях легких, чтобы отметить, когда уровень кислорода в крови станет снижаться. И принять меры для его повышения и дальнейшего поддержания нормального уровня.
Как выглядит пульсоксиметр?
Это небольшое устройство, визуального похожее на прищепку для белья.
Его нужно надеть на палец и ждать результат измерения, который высветится на небольшом экране. Работает прибор на батарейках, хранить его можно в домашней аптечке.
Когда и зачем он нужен?
Этот прибор незаменим в диагностике различных заболеваний органов дыхания.
Для оценки степени гипоксии (недостатка кислорода) у пациента необходимо измерять уровень сатурации (насыщения кислородом крови).
Пульсоксиметр применяется при:
Пульсоксиметр необходим людям с хроническими заболеваниями. Его можно носить в кармане, сумке, рюкзаке.
Измеряя сатурацию самостоятельно, можно вовремя обнаружить любые ухудшения состояния и принять необходимые меры, которые смогут спасти вам жизнь.
Получить результат сатурации можно за считанные 10-15 секунд.
Коронавирусная инфекция
При коронавирусной инфекции следить за уровнем кислорода в крови нужно обязательно, так как известно, что вирус поражает легкие.
Сатурации 90% и ниже является условием для госпитализации в стационар.
Если у вас отмечаются:
Все эти признаки свидетельствуют о том, что человек находится либо в зоне риска, либо уже заражен коронавирусной инфекцией.
В таких случаях нужно своевременно определить ухудшение состояния и незамедлительно вызвать скорую помощь. Даже если вы перенесли коронавирусную инфекцию, симптомы кислородного голодания часто сохраняются, при этом нужно регулярно следить за сатурацией кислорода в крови.
Кому необходим этот прибор?
Пульсоксиметр полезен каждому человеку, кто заботится о своем здоровье. В период пандемии такое устройство поможет постоянно «держать руку на пульсе». Это своевременно даст информацию об ухудшении здоровья, если оно произойдет, и просто успокоит.
Как пользоваться пульсоксиметром?
Пульсоксиметр очень прост в использовании, его нужно включить, надеть «прищепку» на палец и дождаться результатов, которые будут известны через 10-15 секунд.
В комплекте с прибором, производитель прилагает инструкцию, в которой все подробно и доступно расписано. Сложностей возникать не должно, поскольку прибор прост в использовании и он компактный.
Какой палец использовать при измерении? Имеет ли это значение?
Правша вы или левша, значения не имеет. Главное, при измерении использовать либо указательный, либо средний пальцы.
Если говорить о разнице измерения на разных пальцах, то она небольшая или же ее не будет вовсе, поэтому, если вы предпочитаете указательный палец, среднему, используйте его.
Врачи рекомендуют не иметь лакового покрытия на ногтях, так как лак или гель-лак могут привести к неточным показателям. К тому же, темный лак может значительно повлиять на точность считывания результатов. Поэтому желательно использовать устройство без маникюра.
Как правильно выбрать аппарат?
Спрос на пульсоксиметры в период пандемии постоянно растёт. Такое компактное устройство, как пульсоксиметр можно найти в любой аптеке вашего города, а также на Здравсити.
Сейчас в продаже представлен большой выбор приборов, которые подойдут для домашнего применения. Уделяйте особое внимание функционалу, цене, бренду, сертификатам качества и отзывам покупателей.
В свою очередь, врачи рекомендуют ориентироваться на тип прибора. Для домашнего использования, как упоминалось выше, подойдет простая и компактная прищепка на палец.
Если же вас интересуют пульсоксиметры, обладающие системой памяти и круглосуточным измерением сатурации, стоит обратить свое внимание на полу- или профессиональные модели, которые также можно приобрести в аптеках, но имейте в виду, что такие приборы будут стоить дороже обычных портативных пульсоксиметров.
Обязательно при покупке прибора обращайте внимание на наличие лицензии и гарантию качества производителя. Это позволит обменять или вернуть потраченные средства на пульсоксиметр, если он окажется бракованным и/или будет иметь какие-либо повреждения.
На стоимость пульсоксиметров также стоит обратить особое внимание. Не рекомендуется покупать дешевые приборы, хоть они и наиболее доступны, но тем не менее, они являются недолговечными.
Даже замена батареек не дает гарантии дальнейшей стабильной работы аппарата и верности показаний при измерении.
Устройства из средней ценовой категории надежные, показаниям измерения сатурации, как правило, можно доверять, погрешности минимальны или они вовсе отсутствуют.
Дорогостоящие пульсоксиметры часто используют в стационарах. Но они оправдывают свою цену, так как эти приборы обладают рядом полезных функций, о которых говорилось выше, также они являются долговечными.
Однако, для домашнего использования рекомендуется приобрести портативный пульсоксиметр «прищепку».
При покупке стоит обращать внимание на стоимость, гарантию качества и сертификацию товара. Также можно получить консультацию специалиста, который поможет вам в выборе нужного для вас прибора.
Идём на обследование: плюсы и минусы радиоизотопной диагностики
Сплошные преимущества
В основе этого метода обследования лежит способность радиоактивных изотопов к излучению. Сейчас чаще всего проводят компьютерное радиоизотопное исследование – сцинтиграфию. Вначале пациенту в вену, в рот или ингаляционно вводят радиоактивное вещество. Чаще всего используются соединения короткоживущего изотопа технеция с различными органическими веществами.
Излучение от изотопов улавливает гамма-камера, которую помещают над исследуемым органом. Это излучение преобразуется и передается на компьютер, на экран которого выводится изображение органа. Современные гамма-камеры позволяют получить и его послойные «срезы». Получается цветная картинка, которая понятна даже непрофессионалам. Исследование проводится в течение 10–30 минут, и все это время изображение на экране меняется. Поэтому врач имеет возможность видеть не только сам орган, но и наблюдать за его работой.
Все другие изотопные исследования постепенно вытесняются сцинтиграфией. Так, сканирование, которое до появления компьютеров было основным методом радиоизотопной диагностики, сегодня применяется все реже. При сканировании изображение органа выводится не на компьютер, а на бумагу в виде цветных заштрихованных строчек. Но при этом методе изображение получается плоским и к тому же дает мало информации о работе органа. Да и больному сканирование доставляет определенные неудобства – оно требует от него полной неподвижности в течение тридцати-сорока минут.
Точно в цель
С появлением сцинтиграфии радиоизотопная диагностика получила вторую жизнь. Это один из немногих методов, который выявляет заболевание на ранней стадии. К примеру, метастазы рака в костях обнаруживаются изотопами на полгода раньше, чем на рентгене. Эти полгода могут стоить человеку жизни.
В некоторых случаях изотопы – вообще единственный метод, который может дать врачу информацию о состоянии больного органа. С их помощью обнаруживают заболевания почек, когда на УЗИ ничего не определяется, диагностируют микроинфаркты сердца, невидимые на ЭКГ и ЭХО-кардиограмме. Порой радиоизотопное исследование позволяет врачу «увидеть» тромбоэмболию легочной артерии, которая не видна на рентгене. Причем этот метод дает информацию не только о форме, строении и структуре органа, но и позволяет оценить его функциональное состояние, что чрезвычайно важно.
Если раньше с помощью изотопов обследовали только почки, печень, желчный пузырь и щитовидную железу, то сейчас положение изменилось. Радиоизотопная диагностика применяется практически во всех областях медицины, включая микрохирургию, нейрохирургию, трансплантологию. К тому же эта диагностическая методика позволяет не только поставить и уточнить диагноз, но и оценить результаты лечения, в том числе вести постоянное наблюдение за послеоперационными больными. К примеру, без сцинтиграфии не обойтись при подготовке больного к аортокоронарному шунтированию. А в дальнейшем она помогает оценить эффективность операции. Изотопы выявляют состояния, угрожающие жизни человека: инфаркт миокарда, инсульт, тромбоэмболию легочной артерии, травматические кровоизлияния в мозг, кровотечения и острые заболевания органов брюшной полости. Радиоизотопная диагностика помогает отличить цирроз от гепатита, разглядеть злокачественную опухоль на первой стадии, выявить признаки отторжения пересаженных органов.
Под контролем
Противопоказаний к радиоизотопному исследованию почти нет. Для его проведения вводится ничтожное количество короткоживущих и быстро покидающих организм изотопов. Количество препарата рассчитывается строго индивидуально в зависимости от веса и роста пациента и от состояния исследуемого органа. А врач обязательно подбирает щадящий режим исследования. И самое главное: облучение при радиоизотопном исследовании обычно даже меньше, чем при рентгенологическом. Радиоизотопное исследование настолько безопасно, что его можно проводить несколько раз в год и сочетать с рентгеном.
На случай непредвиденной поломки или аварии изотопное отделение в любой больнице надежно защищено. Как правило, оно расположено далеко от лечебных отделений – на первом этаже или в подвале. Полы, стены и потолки в нем очень толстые и покрыты специальными материалами. Запас радиоактивных веществ находится глубоко под землей в специальных просвинцованных хранилищах. А приготовление радиоизотопных препаратов производится в вытяжных шкафах со свинцовыми экранами.
Также ведется постоянный радиационный контроль с помощью многочисленных счетчиков. В отделении работает обученный персонал, который не только определяет уровень радиации, но и знает, что предпринять в случае утечки радиоактивных веществ. Кроме сотрудников отделения, уровень радиации контролируют специалисты СЭС, Госатомнадзора, Москомприроды и УВД.
Простота и надежность
Определенных правил во время радиоизотопного исследования должен придерживаться и пациент. Все зависит от того, какой орган предполагается обследовать, а также от возраста и физического состояния больного человека. Так, при исследовании сердца пациент должен быть готов к физическим нагрузкам на велоэргометре или на дорожке для ходьбы. Исследование будет более качественным, если его делать на голодный желудок. Ну и, конечно, нельзя принимать лекарственные препараты за несколько часов до исследования.
Перед сцинтиграфией костей пациенту придется выпить много воды и часто мочиться. Такая промывка поможет вывести из организма изотопы, которые не осели в костях. При исследовании почек тоже надо выпить побольше жидкости. Сцинтиграфию печени и желчных путей делают на голодный желудок. А щитовидная железа, легкие и головной мозг исследуются вообще без всякой подготовки.
Радиоизотопному исследованию могут помешать металлические предметы, оказавшиеся между телом и гамма-камерой. После введения препарата в организм надо подождать, пока тот достигнет нужного органа и распределится в нем. Во время самого исследования пациент не должен двигаться, иначе результат будет искажен.
Простота радиоизотопной диагностики дает возможность обследовать даже крайне тяжелых больных. Ее применяют и у детей, начиная с трех лет, в основном им исследуют почки и кости. Хотя, конечно, дети требуют дополнительной подготовки. Перед процедурой им дают успокаивающее, чтобы во время исследования они не вертелись. А вот беременным радиоизотопное исследование не проводят. Это связано с тем, что развивающийся плод очень чувствителен даже к минимальной радиации.