коэффициент теплоотдачи что такое
Основной закон теплоотдачи. Коэффициент теплоотдачи.
В процессе теплоотдачи независимо от направления теплового потока Q (от стенки к жидкости или наоборот) значение его принято считать положительным, поэтому разность tc— t ж берут по абсолютной величине.
Коэффициент пропорциональности a называется коэффициентом теплоотдачи; его единица измерения Вт/(м 2 ·К). Он характеризует интенсивность процесса теплоотдачи. Численное значение его равно тепловому потоку от единичной поверхности теплообмена при разности температур поверхности и жидкости в 1 К.
Строго говоря, выражение (5.5) справедливо лишь для дифференциально малого участка поверхности dF, т. е.
поскольку коэффициент теплоотдачи может быть не одинаковым в разных точках поверхности тела. Для расчета полного потока теплоты от всей поверхности нужно проинтегрировать обе части уравнения (5.6) по поверхности
. (5.7)
Обычно температура поверхности принимается постоянной tc = const, тогда
. (5.8)
В расчетах используются понятия среднего по поверхности коэффициента теплоотдачи:
, (5.9)
(5.10)
Значение коэффициента теплоотдачи a зависит от физических свойств жидкости и характера ее движения.
Локальный коэффициент теплоотдачи при продольном обтекании тонкой пластины.
Рассмотрим процесс теплоотдачи от потока теплоносителя к продольно омываемой им пластине. Скорость и температура набегающего потока постоянны и равны wж и t ж (рис. 5.2).
Как уже отмечалось, частицы жидкости, непосредственно соприкасающиеся с поверхностью, адсорбируются («прилипают») к ней. Соприкасаясь с неподвижным слоем, тормозятся и более удаленные от поверхности слои жидкости. Зона потока, в которой наблюдается уменьшение скорости (w
На начальном участке (при малых значениях координаты х) гидродинамический слой очень тонок (в лобовой точке с координатой х = 0 толщина равна нулю) и течение в нем ламинарное — струйки жидкости движутся параллельно, не перемешиваясь. При удалении от лобовой точки толщина пограничного слоя растет. На некотором расстоянии х = хкр ламинарное течение становится неустойчивым. В пограничном слое появляются вихри (турбулентные пульсации скорости). Постепенно турбулентный режим течения распространяется почти на всю толщину гидродинамического пограничного слоя. Лишь около самой поверхности пластины сохраняется тонкий ламинарный, или вязкий подслой, где скорость невелика и вязкость гасит турбулентные вихри.
Рис. 5.2. Образование пограничного слоя (а) и распределение местного (локального) коэффициента теплоотдачи (б) при продольном обтекании тонкой пластины.
С удалением от лобовой точки количество охлаждающейся у пластины жидкости увеличивается, и толщина теплового пограничного слоя возрастает аналогично возрастанию dг. В общем случае толщины теплового и гидродинамического слоев не равны, но часто достаточно близки друг к другу, особенно в газах.
При ламинарном течении тепловой поток от охлаждающейся в пограничном слое жидкости переносится к поверхности пластины только за счет теплопроводности. При этом плотность теплового потока по толщине пограничного слоя неодинакова: на внешней границе q = 0, ибо дальше жидкость не охлаждается; по мере приближения к поверхности значение q возрастает. Для качественного анализа можно предположить, что плотность теплового потока q по всей толщине пограничного слоя такая же, как и у поверхности. Это условие соответствует задаче о переносе теплоты теплопроводностью через плоскую стенку (пограничный слой толщиной δТ с температурами tc и tж на поверхностях). Согласно решению этой задачи Q
В переходном, а тем более, в турбулентном режиме основное термическое сопротивление сосредоточено в тонком ламинарном подслое, поэтому формула (5.11) приближенно пригодна для оценок и в этих режимах, если вместо δТ подставлять значение толщины ламинарного подслоя.
С увеличением толщины теплового пограничного слоя при ламинарном течении жидкости у поверхности пластины интенсивность теплоотдачи уменьшается. В переходной зоне общая толщина пограничного слоя продолжает возрастать, однако значение a при этом увеличивается, потому что толщина ламинарного подслоя убывает, а в образующемся турбулентном слое тепло переносится не только теплопроводностью, но и конвекцией, т. е. более интенсивно. В результате суммарное термическое сопротивление теплоотдачи убывает.
После стабилизации толщины ламинарного подслоя в зоне развитого турбулентного режима коэффициент теплоотдачи вновь начинает убывать из-за возрастания общей толщины пограничного слоя.
Из формулы (9.11) видно, что коэффициент теплоотдачи к газам, обладающим малой теплопроводностью, будет ниже, чем коэффициент теплоотдачи к капельным жидкостям, а тем более к жидким металлам.
Для получения высоких коэффициентов теплоотдачи к газам стараются каким-либо способом уменьшить толщину пограничного слоя. Проще всего для этого увеличить скорость течения газа. Интенсификация теплоотдачи происходит и при резкой искусственной турбулизации пограничного слоя струями, направленными по нормали к поверхности. С помощью системы из множества струй можно обеспечить высокие значения a от достаточно протяженной поверхности. Так, в воздушных струях с относительно невысокими скоростями истечения (w » 60 м/с) удается достигать значений a = 200¸300 Вт/(м 2 ∙К). При обычном продольном обтекании протяженных поверхностей толщина пограничного слоя сравнительно велика, а коэффициент теплоотдачи к воздуху при таких скоростях обычно ниже 100 Вт/(м 2 ∙К).
Локальный коэффициент теплоотдачи при течении теплоносителя внутри трубы.
При течении жидкости в трубе толщина пограничного слоя вначале растет симметрично по всему периметру (рис. 9.3, а), до тех пор, пока слои с противоположных стенок не сольются на оси трубы. Дальше движение стабилизируется и фактически гидродинамический (и тепловой) пограничный слой заполняет все сечение трубы. В зависимости от конкретных условий пограничный слой на начальном участке может успеть (или не успеть) перейти в турбулентный. Соответственно стабилизированный режим течения в трубе будет либо турбулентным с ламинарным подслоем около стенки, либо ламинарным по всему сечению.
В связи с особенностями течения жидкости в трубе изменяется и само понятие коэффициента теплоотдачи. Для пластины коэффициент a рассчитывался как отношение плотности теплового потока q к разности температур внешнего невозмущенного потока и поверхности (или наоборот при tc > tж). В трубе пограничный слой занимает все сечение и невозмущенного потока нет, поэтому под коэффициентом теплоотдачи понимают отношение плотности теплового потока q к разности температуры стенки и среднемассовой температуры жидкости, протекающей через данное сечение трубы.
Локальный коэффициент теплоотдачи от трубы к текущей в ней жидкости изменяется лишь на начальном участке (рис. 9.3, б), а на участке стабилизированного течения aст = const, поскольку толщина пограничного слоя (dт = r) постоянна. С увеличением скорости течения теплоносителя в трубе aст возрастает из-за уменьшения толщины ламинарного подслоя, а с увеличением диаметра трубы уменьшается, поскольку растёт толщина всего пограничного слоя dт = r.
Рис. 9.3. Образование пограничного слоя (а) и распределение местного коэффициента теплоотдачи (б) при турбулентном течении теплоносителя внутри трубы.
Чтобы получить аналитическое выражение для коэффициента теплоотдачи, необходимо интегрировать систему дифференциальных уравнений, описывающих движение жидкости и перенос теплоты в ней. Даже при существенных упрощениях это возможно лишь в отдельных случаях при ламинарном течении жидкости, поэтому обычно для получения расчетных зависимостей прибегают к экспериментальному изучению явления.
Вопрос 27. Что такое коэффициент теплоотдачи, его размерность, как его определить для выполнения расчетов?
α – характеризует интенсивность конвективного теплообмена и зависит от скорости теплоносителя, теплоемкости, вязкости, от формы поверхности и тд.
[Вт/(м 2 ×град)].
Коэффициент теплоотдачи численно равен мощности теплового потока, передаваемому одному квадратному метру поверхности при разности температур между теплоносителем и поверхностью в 1°С.
Основной и наиболее трудной проблемой в расчётах процессов конвективной теплоотдачи является нахождение коэффициента теплоотдачи α. Современные методы описания процесса коэф. теплопроводности, основанные на теории пограничного слоя, позволяют получить теоретические (точные или приближённые) решения для некоторых достаточно простых ситуаций. В большинстве же встречающихся на практике случаев коэффициент теплоотдачи определяют экспериментальным путём. При этом как результаты теоретических решений, так и экспериментальные данные обрабатываются методами теории подобия и представляются обычно в следующем безразмерном виде:
Nu = f (Re, Pr) — для вынужденной конвекции и
Nu = f (Gr Re,, Pr) — для свободной конвекции,
где — число Нуссельта,— безразмерный коэффициент теплоотдачи (L — характерный размер потока, λ— коэффициент теплопроводности); Re=
— число Рейнольдса, характеризующее соотношение сил инерции и внутреннего трения в потоке (u — характерная скорость движения среды, υ — кинематический коэффициент вязкости);
Pr = — число Прандтля, определяющее соотношение интенсивностей термодинамических процессов (α – коэффициент температуропроводности);
Gr = — число Грассгофа, характеризующее соотношение архимедовых сил, сил инерции и внутреннего трения в потоке (g — ускорение свободного падения, β — термический коэффициент объёмного расширения).
Коэффициент теплоотдачи что такое
Коэффициент теплопередачи является количественной расчет ной величиной и зависит от коэффициентов теплоотдачи, термического сопротивления стенки и загрязнений.
Для плоской стенки
, (9.28)
где – коэффициент теплоотдачи от горячего теплоносителя, Вт/(м град);
– толщина теплопередающей стенки аппарата, м;
— коэффициент теплопроводности материала стенки, Вт/(м град);
— коэффициент теплоотдачи от стенки к холодному теплоносителю, Вт/(м град);
– термическое сопротивление загрязнения стенки, м 2 град/Вт.
Если теплопроводность слоя загрязнения неизвестна, подсчитывают К для чистой стенки, а влияние загрязнения стенки учитывают при помощи коэффициента использования поверхности теплообмена j
, (9.29)
Коэффициенты теплоотдачи a определяются в основном из формул
или
где Nu – безразмерный критерий подобия Нуссельта; l – коэффициент теплопроводности теплоносителя (для которого определяется коэффициент теплоотдачи), Вт/(м град); l – определяющий геометрический размер, м; – эквивалентный диаметр, м.
(9.31)
где F – площадь поперечного сечения потока, м 2 ; П – смоченный периметр, м.
Критерий Нуссельта в зависимости от состояния и характера движения сред определяется по различным критериальным уравнениям.
Для подсчета a 1 и a 2 критериальное уравнение выбирается по справочникам так, чтобы оно возможно точно совпадало с условиями расчета.
Для устойчивого турбулентного режима движения жидкостей внутри труб ( Re > 10000) рекомендуется следующее критериальное уравнение:
, (9.32)
где – критерий Рейнольдса;
– критерий Прандтля;
— средняя скорость теплоносителя, м/с; l – определяющий геометрический размер, м; r – плотность теплоносителя, кг/м; m – вязкость теплоносителя, Н с/м 2 ;
– массовая скорость теплоносителя, кг/(м 2 с);
– эквивалентный диаметр, м; c – удельная теплоемкость теплоносителя, Дж/(кг град); l – теплопроводность теплоносителя, Вт/(м град).
Здесь за определяющую температуру принята , а за определяющий размер эквивалентный диаметр
. Уравнение (8.32) применяется при
, 100 > Pr > 0,6; для труб – при условии
, где l – длина трубы, м; d – диаметр трубы, м.
, (9.33)
Для ламинарного движения ( Re
, (9.34)
где a – множитель (для горизонтальных труб d = 0,74; для вертикальных труб a= 0,85), – критерий Грасгофа; g = 9,81 ускорение свободного падения, м/с 2 ; r – плотность теплоносителя, кг/м ; b – коэффициент объемного расширения теплоносителя, град –1 ;
– частный температурный напор, град.
Если теплоноситель перемещается в межтрубном пространстве (при наличии перегородок), то критерий Нуссельта определяется по уравнению
, (9.35)
Глава 4. Теплопередача в химической аппаратуре, основные зависимости и расчетные формулы (стр. 3 )
Испарительный теплообменник оконного кондиционера сделан из алюминия, с применением медных трубок.
Коэффициент теплоотдачи для разных материалов
Что такое теплопроводность
Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:
Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.
Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.
Показатели для стали
Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.
Существуют и другие особенности теплопроводности:
Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.
База знаний по трехмерному проектированию в Pro/Engineer, Creo, Solidworks, электронике на STM32
Обучение САПР. Важные параметры некоторых материалов, используемые при тепловых расчетах
В этой таблице представлены такие важные параметры как Коэффициент теплопроводности λ
и
Удельная теплоемкость ср
, которые необходимы для проведения тепловых расчетов по статьям Creo 3. Расчет радиатора охлаждения с принудительной вентиляцией и Solidworks 2013. Тепловой расчет радиатора охлаждения с принудительной вентиляцией в Solidworks Simulation.
Материал | Коэффициент теплопроводности λ, Вт/(м•K) | Удельная теплоемкость ср, Дж/(кг•K) |
Алюминий (чистый) | 208 (при 25 °C) 216 (при 100 °C) | 902 (при 25 °C) 938 (при 100 °C) |
Дюралюминий Д16 | 130 (при 100 °C) | 922 (при 100 °C) |
Cплав 2024 термообработка T4 или T351 (аналог дюралюминия Д16) | 121 (по данным matweb.com) | 875 (по данным matweb.com) |
Cплав АМг6 | 122 (при 100 °C) | 922 (при 100 °C) |
Сплав АД31 (для охладителей) | 188 (при 100 °C) | 921 (при 100 °C) |
Сплав 6063 термообработка T6 (аналог АД31) | 209 (SolidWorks) 200 (по данным matweb.com) | 900 (по данным matweb.com) |
Медь М1 (для охладителей) | 387 (при 20 °C) | 390 (при 20 °C) |
Медь С11000 или Cu-ETP DIN (аналог М1) | 388 (при 20 °C) 380 (при 100 °C) по данным matweb.com | 385 (по данным matweb.com) |
Латунь ЛС59-1 | 104,7 (при 20 °C) | 376,8 (при 100 °C) |
Латунь Л63 | 104,7 (при 20 °C) | 376,8 (при 100 °C) |
Латунь C33500 или CuZn37 DIN (аналог Л63) | 115 (при 20 °C) по данным matweb.com | — |
Сталь 12Х18Н10Т | 15 (при 25 °C) 16 (при 100 °C) | 462 (при 100 °C) |
Сталь 321 (аналог 12Х18Н10Т) | 16,1 (при 100 °C) по данным matweb.com | 500 (при 100 °C) по данным matweb.com |
Сталь 316L | 14,0-15,9 (по данным matweb.com) | 500 (при 100 °C) по данным matweb.com |
Сталь 10 | 57 (при 100 °C) по данным matweb.com | 494 (при 100 °C) по данным matweb.com |
Сталь 1010 (аналог стали 10) | 49,8 (по данным matweb.com) | 448 (при 100 °C) по данным matweb.com |
В следующей таблице представлены Коэффициенты конвекции h или α
(другое название
Коэффициенты конвективной теплоотдачи
и
Коэффициенты конвективной теплопередачи
), необходимые для оценочных расчетов
Влияние концентрации углерода
Концентрация углерода в стали влияет на величину теплопередачи:
Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.
Коэффициент теплоотдачи поверхность — воздух
В статье рассмотрен расчет мощности теплового потока от горизонтальных и вертикальных плоских поверхностей тела, помещенного в «безразмерное» воздушное пространство при принудительной и естественной конвекции с учетом радиационной составляющей теплоотдачи.
Зная коэффициент теплоотдачи на поверхности (α), разделяющей твердое тело и окружающее это тело воздушное пространство, очень просто определить мощность теплового потока (Q) по известной разности температур (Δt).
Q=α*A*Δt, Вт – мощность теплового потока от или к поверхности тела.
Основная сложность расчета заключается в определении коэффициента конвективной теплоотдачи (αк)! Автоматизировать в первую очередь решение этой трудоемкой задачи поможет Excel.
Нестабильность процесса естественной конвекции у поверхностей различной формы и расположения в пространстве породила большое разнообразие эмпирических формул для вычисления коэффициента конвективной теплоотдачи (αк). Неизбежные погрешности экспериментальных данных привели к тому, что результаты вычислений для одних и тех же поверхностей и условий по формулам разных авторов отличаются друг от друга на 20% и более.
После тщательного детального ознакомления с материалами современных западных изданий по теплообмену (список литературы – в конце статьи) были выбраны формулы, рекомендованные к применению большинством авторов, для использования в представленной далее программе в Excel.
Схемы теплообмена:
На представленных ниже рисунках показаны 8 вариантов схем, для которых программа может выполнить вычисления.
Розовый цвет пластин свидетельствует о том, что они горячее окружающего воздуха. Голубой цвет – пластины холоднее воздуха.
На схемах 1а и 1б воздух принудительно движется (вентилятор, ветер) вдоль поверхности пластины независимо от её ориентации в пространстве. На всех остальных схемах окружающий воздух находится в спокойном состоянии (помещение, полный штиль), а положение пластин сориентировано в пространстве.
Расчет в Excel:
Формулы алгоритма программы:
t=(tв+tп)/2
l=L – для схем 1а и 1б
l=(B*L)/(2*(B+L)) – для схем 2а, 2б, 3а, 3б, 4а, 4б
Re=w*l/ν
Gr=g*β*|tп— tв|*l 3 /ν 2
Ra=Gr*Pr
αк=Nu*λ/l
αр=ε*0,00000005670367*((tп+273,15) 4 — (tв+273,15) 4 )/(tп-tв)) – при tв *) αр= – при tв>tп
α=αк+αр
q=α*(tп-tв)
*) Нагрев поверхностей Солнцем или иными источниками теплового излучения программой игнорируется.
Вычисление теплофизических параметров воздуха и числа Нуссельта, как видно из вышеприведенных формул, являются ключевыми и самыми трудоемкими при определении конвективного коэффициента теплоотдачи.
Тестирование программы проводилось на примерах из книг, представленных в конце статьи. Отклонения результатов в основном не выходили за пределы ±5%.
Замечание:
В отечественной теплотехнической литературе для решения рассмотренных задач широко используются формулы второй половины прошлого века М.А. Михеева и В.П. Исаченко, которые в современной западной литературе не упоминаются. Беглый сравнительный анализ результатов расчетов по формулам разных авторов дал противоречивые и неоднозначные ответы. Если при принудительной конвекции результаты фактически идентичны, то при естественной конвекции отличаются порой на 30% и более, но иногда почти совпадают…
Литература:
Прошу уважающих труд автора скачать файл с программой после подписки на анонсы статей!
Значение в быту и производстве
Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:
Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.
P. S. (01.11.2020)
Дополнение по естественной конвекции у вертикальной поверхности:
Если построить графики по вышеприведенным формулам Черчилля и Чу для числа Нуссельта при естественной конвекции у вертикальной изотермической поверхности (схемы 2а и 2б), то можно увидеть, что при Ra=10 9 кривые не совпадают!
Еще один нюанс, который встретился только у Линхардов в [1]: «свойства флюида следует оценивать при t=(tв+tп)/2 за одним исключением, если флюид – газ, то коэффициент объемного расширения β следует определять при t=tв». Но сами авторы зависимостей Черчилль и Чу о таком условии ничего не пишут. По этому поводу в их статье [7], говорится, что «для больших температурных перепадов, когда физические свойства существенно различаются, Ид рекомендует оценивать физические свойства как средние значения температуры поверхности и объема, а Уайли дает более подробные теоретические указания для режима ламинарного пограничного слоя».
Как видно из графика при температуре среды — воздуха tв=20°C=293,15K и при перепаде температур поверхности и воздуха Δt=|tп— tв| 90 °C расхождение результатов быстро нарастает.
Правы Линхарды или множество других авторов, рассчитывающих все свойства флюидов при одном значении определяющей температуры t=(tв+tп)/2? Однозначного ответа у меня нет.
(По материалам Обри Джаффера [8].)
Что представляет собой биметаллический радиатор
По сути, биметаллический обогреватель представляет собой смешанную конструкцию, воплотившую преимущества стальных и алюминиевых систем отопления. Устройство радиатора основывается на следующих элементах:
В качестве подтверждения высокой теплоотдачи биметаллического корпуса можно использовать сравнительную таблицу. Среди ближайших конкурентов – радиаторов из чугуна ЧГ, стали ТС, алюминия АА и АЛ, биметаллический радиатор БМ обладает одним из наилучших показателей теплоотдачи, высоким рабочим давлением и коррозионной стойкостью.
В реальности дела обстоят еще хуже, большинство производителей указывает величину теплоотдачи в виде значения тепловой мощности в час для одной секции. То есть, на упаковке может быть указано, что теплоотдача биметаллической секции радиатора составляет 200 Вт.
Делается это вынужденно, данные приводят не к единице площади или перепаду температур в один градус, для того чтобы упростить восприятие покупателем конкретных технических характеристик теплоотдачи радиатора, одновременно сделав маленькую рекламу.
Как улучшить теплоотдачу
Указанный коэффициент мощности конвектора в его техпаспорте, имеет место быть, практически при идеальных условиях. На деле, величина теплового потока несколько снижена,и это обусловлено большими теплопотерями.
В первую очередь, для повышения коэффициента необходимо уменьшить потерю тепла – провести работы по утеплению дома, особое внимание, уделив крыше, так как через нее уходит около 70% теплого воздуха и оконным и дверным проемам.
Сравнение показателей: анализ и таблица
Помимо материала, из которого изготовлен прибор, на коэффициент мощности влияет межосевое расстояние – высота между осями верхнего и нижнего выходов. Также существенное влияние на КПД оказывает величина теплопроводности.