На чем работает газотурбинный двигатель
Как устроена силовая установка пассажирского самолета
Всем привет. Недавно я читал ликбез очередному студенту на тему общего устройства оборудования самолёта. Вводный рассказ, хоть и отработанный до автоматизма, отнял пару часов времени и выявил необходимость ещё в двух-трёх вводных. Но лень — двигатель прогресса и я наконец дозрел до оформления всех этих «лекций» в печатном виде. А там, где есть внутренняя методичка, недалеко и до публикации на Хабре: вдруг, кому ещё интересно почитать будет.
Перед началом изложения хочу оговориться, что моя основная специализация — бортовое оборудование, так что из моего описания может вполне получиться «идеальный самолёт для технолога». Тех, кого этот подход не пугает, а также всех тех, кому интересно зачем в кабине экипажа нужны все эти кнопки и ручки — прошу оценить первую публикацию «Силовая установка».
Кликабельная картинка, чтобы рассмотреть получше:
Про силовую установку
Силовая установка — общее название двигателей летательных аппаратов. Начну с них потому, что без двигателей самолет — не самолет, а в лучшем случае планер. Цена двигателей, к слову, составляет половину стоимости авиалайнера и компетенциями в разработке современных гражданских авиадвигателей обладают гораздо меньше стран, чем тех, кто обладают компетенциями в разработке самолетов.
На авиалайнерах сейчас ставят почти исключительно двухконтурные турбореактивные двигатели (ТРДД). Вот принципиальная схема такого двигателя:
Детали устройства можно прочитать во многих источниках, начиная с Википедии. Для нас, электронщиков, важно понимать следующие факты о работе такого двигателя:
Как запускать двигатель
Чтобы запустить двигатель, надо раскрутить турбину высокого давления, подать топливо и дать первоначальную искру. После того, как турбина раскрутится примерно до 50% оборотов, двигатель начнёт раскручивать себя сам.
Первоначальную раскрутку двигателя можно осуществлять электрическим стартер-генератором (для маленьких двигателей) или специально поданным воздухом высокого давления от пневматической системы. К слову, воздух высокого давления в пневматической системе берется от второго (уже запущенного) двигателя, вспомогательной силовой установки (ВСУ) или внешнего источника.
Пример пульта управления, используемого для запуска двигателя:
Для автоматического запуска надо выполнить следующие действия:
Как управлять двигателем
Управление двигателями осуществляется с помощью рычагов управления двигателями (РУД).
На каждый двигатель — свой рычаг. Тут всё просто: толкаем рычаг от себя — двигатель крутится быстрее, тяга растёт. Тянем рычаг на себя — крутится медленнее. Так как РУД не связан с топливным дросселем напрямую, можно не бояться, что мы сожжем двигатель большим количеством топлива или заглушим недостаточным. FADEC в любом случае не даст ему превысить предельную температуру выхлопных газов или заглохнуть. Кстати, с ограничением температуры выхлопных газов связан тот факт, что в жару и/или на высокогорных аэродромах двигатель может выдать меньшую тягу.
В районе «малого газа» у рычага упор. Чтобы разблокировать перевод рычагов в зону режимов реверса, надо потянуть за специальную скобу. При реверсе двигателя специальные створки разворачивают поток от вентилятора двигателя в обратном направлении, помогая самолету остановиться:
Вообще, с помощью реверса самолёт может даже поехать назад, но, так как в этом режиме для двигателей, висящих под крылом, возможна ситуация засасывания в двигатель мусора и даже камней с взлётно-посадочной полосы, для авиалайнеров не рекомендуется включать реверс на малых скоростях.
Для включения реверса FADEC анализирует не только положение РУДов, но и датчики обжатия шасси, так что случайно в воздухе запустить реверс невозможно.
Про индикацию и сигнализацию
Данные работы двигателей, как правило, отображаются на неотключаемой части центрального дисплея пилотов и на специальной странице с расширенными данными по двигателю.
В постоянно индицируемом окне статуса работы двигателя доступны следующие данные:
а. Текущие обороты вентилятора двигателя (напрямую влияют на тягу)
б. Температура выхлопных газов — параметр работы двигателя, часто ограничивающий максимальную тягу. FADEC ограничивает ток топлива в том числе, чтобы не расплавить конструкцию лопаток турбин. Лётчику тоже важно понимать, почему обороты не растут, хотя он «просит»
в. Заданные обороты вентилятора двигателя (разгон двигателя с малого газа до взлётного режима занимает десятки секунд и текущие обороты не всегда совпадают с заданными)
г. Обороты турбины высокого давления. Помните, что турбин две и они работают независимо? Так вот данные оборотов турбины высокого давления важны при запуске двигателя. В полёте контролировать их не надо
д. Текущий расход топлива
е. Признак включения реверса
ж. Установившийся режим работы двигателя (малый газ, взлётный, набор высоты)
На специальной странице дополнительных параметров работы двигателя может выводиться такая информация, например как:
Варианты газотурбинных двигателей
Двигатели, в которых вентилятор вынесен за пределы мотогондолы (корпуса двигателя) называются турбовинтовыми. Они обладают лучшими взлетно-посадочными характеристиками, но быстро теряют эффективность при росте скорости больше 0.5 скорости звука (приблизительно). Поэтому они в основном применяются в самолётах для местных авиалиний и военно-транспортной авиации, где возможность использования коротких и неподготовленных взлетно-посадочных полос важнее, чем крейсерская скорость. В конструкции таких двигателей также часто применяется понижающая трансмиссия, как, например, на рисунке ниже.
Газотурбинные двигатели также используются на вертолётах, только в этом случае они крутят не пропеллер, а винт, сами двигатели в этом случае называются турбовальными. Хорошее видео, иллюстрирующее принципы их работы:
Ещё газотурбинные (турбовальные) двигатели ставят на танки (Т-80, Абрамс).
К преимуществам таких двигателей относят высокую удельную мощность, хороший запуск даже при низких температурах, возможность тянуть «с низов» — турбина высокого давления отделена от силовой турбины и двигатель не глохнет, когда гусеницы стоят неподвижно.
К недостаткам – высокую стоимость двигателя, сложность технического обслуживания, низкую приёмистость. По каждой из особенностей применения газотурбинных двигателей для танков есть разные полярные мнения, я же не специалист по танкам — не кидайте в меня камни. Я мог ошибиться. 🙂
Нелокализованный разлёт осколков
Одним из «свойств» двигателя, сильно влияющим на конструкцию бортового оборудования, является так называемый «нелокализованный разлёт осколков двигателя». Это событие возникает при взрывном разрушении двигателя, когда лопатки компрессоров и турбин разлетаются во все стороны.
При оценке последствий такого отказа, считается, что осколки обладают «бесконечной» энергией, которой достаточно, чтобы пробить любые преграды, разрубить любые трубы и провода. Для обеспечения безопасного завершения полета в случае такого нелокализованного разлета разработчики архитектуры электронного оборудования для каждого критического провода должны предусмотреть резервный, проложенный в отдельном канале, который не может быть перебит тем же осколком, что и основной провод.
Примечание для впечатлительных: на самом деле разработчики двигателей делают всё возможное, чтобы избежать нелокализованного разлёта, и действительно они случаются очень редко. Даже попадание крупной птицы в двигатель не сломает его. Но авиация — отрасль консервативная и мы закладываем в архитектуру противодействие всем потенциально возможным рискам.
Идеальный самолёт глазами инженеров. Лично мне взгляд технологов особенно симпатичен.
Газотурбинный двигатель: Устройство и принцип работы
Сегодня среднестатистический обыватель знаком с устройством и принципом работы мотора внутреннего сгорания, а вот газотурбинный двигатель, приводит пользователя в тупик. Тем не менее принцип действия турбинного агрегата намного проще поршневого мотора. Из-за особенностей эксплуатации, первый нашёл применение в авиации, второй установлен на 90% штатных автомобилей.
По классификации, силовая установка относится к тепловым устройствам, поскольку трансформирует выделившийся напор от горения в работу механики. В противовес агрегату с поршнями, проходящее преобразование течёт в непрерывной газовой струе, а это влияет на конструкцию и эксплуатацию. Попытки установить газотурбинный мотор на машины предпринимаются постоянно, однако массового развития идея не получила.
Отличительные черты
Как уже говорилось раньше, предпринимались попытки использовать газотурбинный двигатель для автомобиля, однако дальше испытаний дело не пошло. Единственная отрасль, в которой агрегат нашёл применение — авиация.
Если сравнивать газотурбинный мотор с иными силовыми установками, то у первого изделия значение вырабатываемой мощи по отношению к массе больше. Так же плюс в используемом топливе, доведённый до мелкодисперсного состояния, ассортимент воображает, главный вид — керосин и дизель. Но возможно применение: бензина, газа, спирта, мазута, угольной пыли и т.п.
Агрегат с поршнями и газотурбинная установка, это моторы, работающие на основе тепла, преобразующие энергию, выделившуюся при горении в работу механики. Разница между устройствами заключается в течение процесса. В обоих моторах происходит забор и воздушное сдавливание, после чего подаётся порция горючего, затем субстанция горит, увеличивается и сбрасывается атмосферную среду.
В поршневых установках описанные действия происходят в одной точке — камере сгорания, при этом соблюдается очерёдность действий. Для газотурбинного двигателя характерно протекание действий в нескольких частях механизма одновременно.
Что бы понять, как работает газотурбинный двигатель, разделяют этапы протекания процессов, которые в сумме составляют преобразование топлива в работу:
За счёт прохождения атмосферного воздуха через компрессорное колесо, смесь сжимается в объёме, увеличивая напор, до сорока раз. После происходит перетекание воздуха в горящий объём, куда подаётся и топливо. Перемешиваясь с воздушной массой и сгорая, смесь энергетически преобразуется.
Выделившуюся силу переформатируют в работу механики. Для этого используют специальные лопатки, которые вращаются в газовой струе, выходящей с напором.
Распределяя полученную работу, задействуют её кусок в сдавливании очередной воздушной порции, оставшаяся мощь отводится для привода механизма.
Таким образом, видно, что действие газотурбинного устройства сопровождается оборачиванием и это единственное перемещение в установке. Тогда как для других видов силовых агрегатов действию сопутствует перемещение вытеснителя. Учитывая, что габариты и масса газотурбинного агрегата меньше поршневого собрата, а полезный коэффициент и мощь выше, превосходство первого очевидно. Однако увеличенный аппетит и сложность эксплуатации нивелируют преимущества. С целью экономии горючего, установки применяют устройство обмена теплом.
Схема включения в процесс турбины:
Газотурбинный двигатель принцип работы
Смысл двигателестроения, достижение повышенного значения полезного коэффициента. В нашем случае, требуемые результаты, напрямую связаны с горением смеси и при этом обширном выделении тепла. Это не так просто, как кажется, основополагающее препятствие — материал изделия, которому сложно выдержать температуру и напор. По этой причине, проведено много расчётов, направленных на снятие тепла с турбины и применение в ином русле. Усилия не пропали даром, повторное использование энергии стало возможным и нагревало сжатые воздушные массы перед горением, а не терялось зря. Без таких устройств «теплообменников» достичь значений полезного действия было бы не возможно.
Для достижения повышенных показателей мощи, турбинные лопатки раскручивают до как можно больших показателей. Скорость вращения обусловлена напором выходящих газов. Чем меньше размер установки, тем выше частота оборотов, поскольку только так достигается стабильность работы.
Газотурбинный двигатель Т 80:
Устройство газотурбинного двигателя
Если сравнивать газотурбинный двигатель с мотором, который применяют на автомобиле, устройство первого проще. Агрегат включает камеру, где происходит сгорание; присутствуют свечи, поджигающие заряд; форсунка, участвующая в смесеобразовании. На одном валу помещены турбинные колёса и нагнетатель. Присутствуют: редуктор понижения, устройство обмена теплом, трубки, коллектор впуска, сопло и концентратор.
Вращаясь на компрессорном валу, лопатки втягивают воздушную массу, используя коллектор впуска. Достигнув скорости вращения 0,5 км/с, нагнетатель затягивает воздух в концентратор. В конечной точке скоростной режим падает, однако сдавливание массы повышается. Далее воздушная масса перетекает в устройство температурного обмена для набора температуры и перехода в область горения. В пространство параллельно с воздушной массой постоянно поступает горючее, за это отвечают распылители. Перемешиваясь, масса и горючее образуют рабочую консистенцию, которая после приготовления воспламеняется свечой. Горение поднимает напор объёма, газы, вырываясь сквозь концентратор, сталкиваются с турбинными лопатками, двигая колесо. Импульс, создаваемый окружностью, передаётся посредством редуктора на движущий элемент, а газовый остаток перетекает в устройство обмена теплом, подогревая там сдавленные воздушные массы и выбрасываясь в среду окружения.
Газотурбинный мотор «ДР59Л»:
Минус установки, цена материала, способного выдержать температуру. Кроме того, чтобы исключить поломку, поступающий в агрегат воздух требует повышенной степени очистки. Несмотря на это, доработка и усовершенствование агрегата проводятся постоянно. Расширяется сфера применения, сегодня построена автомобильная, авиационная установка, и даже газотурбинный двигатель для кораблей.
«Минус» и «плюс» мотора
Газотурбинный агрегат способен вырабатывать большой момент, а значит повышенные показатели мощности. Для охлаждения сопутствующих элементов нет каких-либо устройств, поскольку соприкасающихся поверхностей мало. В то же время, подшипников используется не много, а качество деталей свидетельствует о надёжности и безотказности агрегата.
Отрицательный аспект, это дороговизна используемых материалов при изготовлении деталей и, как следствие, немалые вложения в починку механизма. Несмотря на недостатки, конструкция постоянно дорабатывается и совершенствуется.
Газотурбинный двигатель используют в авиации, на автомобилях установку применяют как эксперимент. Это произошло по причине постоянной потребности в охлаждении газов, поступающих на лопатки турбины. Это снижает полезное действие агрегата, увеличивая потребление горючего.
Главные преимущества мотора:
Танковая установка «ГТД-1500»:
Виды газотурбинных двигателей
Конструктивно газотурбинные силовые установки делят на четыре типа
Двигатель этого типа используют в авиационной промышленности, когда важен показатель скорости передвижения (например, военные самолёты). Работа происходит за счет выхода газов из сопла самолёта на повышенной скорости. Газы толкают транспорт и таким образом двигают изделие вперёд.
Конструктивным отличием с предшественником считается дополнительная турбинная секция. Устройство вращает винт, забирая энергию у газов, прошедших компрессорную турбину. Визуально, механизм представлен рядом лопаток, размещают деталь в передней или задней части. Для отвода выхлопа применяют отводящие патрубки. Аппарат предназначен для установки на летательных аппаратах, используемых на малых высотах и скоростях, может оснащаться биротативным воздушным винтом.
Турбовентиляторный двигатель «Д-27»:
Конструктивно, турбина похожа на предыдущую установку, различие во второй турбинной секции. Элемент отнимает энергию газов частично, как следствие, используются отводные выхлопные патрубки. Особенность агрегата, вентилятор активируется турбиной пониженного напора. По этой причине, второе название двигателя – «двухконтурный». Здесь внутренний контур образован воздушным потоком, идущим через агрегат, внешний контур создаёт направление, чтобы повысить эффект толчка вперёд. Последние выпуски летательных аппаратов применяют турбовентиляторные двигатели, поскольку механизмы надёжны и экономичны на больших высотах.
Конструктивно, установка похожа на предыдущий агрегат. Разница в том, что вал механизма приводит в действие многочисленные возможные элементы. Мотор получил распространение на вертолётах, танках, кораблях. Например, М90ФР, корабельный газотурбинный двигатель, устанавливаемый на фрегатах Российского флота. К таковым относятся: «Адмирал Горшков», «Дерзкий» и др.
Газотурбинный »:
Случается, что газотурбинная силовая установка применяется, как вспомогательное оборудование, например, автономный источник питания на борту. Простые агрегаты сжимают воздушные массы, отбираемые у турбинного компрессора, который запускает главные двигатели. Сложные установки вырабатывают электрическую энергию для нужд бортовой сети.
Газотурбинный двигатель принцип работы
Газотурбинный двигатель: принцип работы и конструкция
Газотурбинный двигатель – это то, что в последнее время используется как энергетическая установка для машины.
И это связано не только с несомненными преимуществами данного агрегата.
Газотурбинный двигатель способен развить мощность, которая просто необходима некоторым автомобилям.
Конструкция
Благодаря тому, что у этого агрегата отсутствуют возвратно-поступательно двигающиеся части, а также тому, что его ротор обладает высокой частотой вращений, можно существенно уменьшить габаритные размеры и удельную массу этого двигателя (если сравнивать с дизелем). А это, в свою очередь, позволяет рассмотреть его как перспективный агрегат. Итак, чтобы создать газотурбинный двигатель своими руками (данным процессом интересуются многие – это реально, однако весьма трудно), нужно иметь турбины, камеру сгорания и компрессор. Также в его комплектацию входят стартер, масляный насос, регулятор частоты вращений и другое оборудование. Как правило, в автомобильных двигателях газотурбинного типа применяется центробежный одноступенчатый компрессор, при помощи которого давление воздуха увеличивается в 3,5 раза. Чтобы достичь указанного давления, нужно, чтобы компрессорное колесо вращалось с как можно большей скоростью. А она составляет около 420-450 метров в секунду.
Материалы
Для изготовления камеры сгорания чаще всего используется листовой жаростойкий материал. Газотурбинный двигатель в своей комплектации имеет осевую и центростремительную турбины. Они же состоят из рабочего колеса и соплового аппарата. Газ в осевой турбине, проходя по каналам, которые находятся в рабочем колесе, изменяет направление своего движения. При этом оказывается давление на лопатки. Благодаря этому образуется сила, которая приводит во вращение рабочее колесо.
Газотурбинный двигатель: принцип работы устройства
Компрессорный вал при помощи стартера приводится в движение. Пусковая частота вращения составляет 2530% от номинальной. Сжатый воздух подается компрессором в камеру сгорания, а в неё через форсунку нагнетается топливо с помощью шестеренчатого насоса. После этого посредством электрической свечи накаливания поджигается горючее. И как только устойчивая зона горения образована, последующее горючее воспламеняется от соприкосновения с огнем, а отработанные газы затем уходят в атмосферу через выпускную трубу.
Отличительные свойства
Хочется отметить, что газотурбинный двигатель обладает еще и высочайшими пусковыми качествами. Несмотря на то, что его стартер имеет достаточно небольшую производительность, он может обеспечить пуск при абсолютно любой температуре внешней среды. Это очень хорошее качество.
И еще одно его существенное преимущество – достаточно малая токсичность газов, которые отрабатываются двигателем: она в 37 раз меньше тех, которые извергает дизель. Из этого можно сделать вывод, что такой двигатель еще и безопасен для окружающей среды.
Принцип работы газотурбинного двигателя
Газотурбинный двигатель (ГТД) представляет собой разновидность теплового двигателя, в конструкции которого имеются лопаточные машины. Особенностью работы является то, что превращение энергии горящего топлива в механическую работу происходит в нем непрерывно.
В ГТД составные части рабочего цикла, включающего сжатие воздуха, отвод теплоты к рабочему телу и расширение, разобщены между собой и протекают в разных местах.
Газотурбинный двигатель может быть использован в качестве теплового двигателя на газотурбовозах и самолетах.
Газотурбинный двигатель может работать на любом виде и сорте топлива (жидкое, твердое и газообразное).
На сегодняшний день известно много конструкций и схем ГТД, отличающихся друг от друга следующими параметрами:
• условиями сжигания топлива — с внутренним и внешним сжиганием;
• использованием рабочего тела в круговом процессе — разомкнутые и замкнутые системы;
• количеством валов — одновальные, двух- и многовальные.
Рис. 2. Принципиальная схема одновального газотурбинного двигателя:
1 — корпус газовой турбины; 2 — рабочее колесо газовой турбины; 3 — топливный насос; 4 — свободный вал; 5— воздушный компрессор; 6 — воздухозаборное устройство воздушного компрессора; 7— электрическая свеча зажигания; 8— камера сгорания; 9 — направляющий аппарат; 10 — газоотвод; II — потребитель мощности; 12 — пусковой двигатель
В установках СПГГ обычно используется низкосортное топливо. Турбина работает на газе с относительно невысокой температурой (500. 600 °С), поэтому для изготовления лопаток может быть использован менее жаропрочный материал. КПД таких установок достигает 35 %, однако они имеют увеличенную массу и габариты по сравнению с дизелями с газотурбинным наддувом.
Экономичность работы ГГД можно улучшить за счет повышения температуры газов перед турбиной, использования многовальных систем, применения регенерации и утилизации теплоты уходящих газов (например, для отопления и кондиционирования воздуха в вагонах), применения промежуточного охлаждения воздуха при сжатии и промежуточного подвода теплоты к газу при его расширении. Обеспечение этих мероприятий требует применения жаропрочных сталей для лопаток турбины, использования металлокерамических материалов, воздушного охлаждения части турбины. При этом КГТД действующих установок повышается до 33. 40 %.
Существуют проектные разработки и попытки создания локомотивных газотурбинных двигателей на твердом или пылевидном топливе.
Газотурбинная установка компактна, обладает малой массой на единицу мощности, не содержит деталей с возвратно-поступательным движением, которое приводит к более быстрому износу двигателя, отличается малыми затратами на содержание оборудования. Она может работать без потребления воды, в ней легко полная автоматизация процессов, имеется реальная возможность для сжигания в камере сгорания различных видов топлива, а также имеет относительно постоянный вращающий момент на валу отбора мощности.
Особенность ГТД, применяемых в авиации, является то, что энергия сгорания топлива преобразуется в энергию истечения газов, которые с большой скоростью через выпускную систему ГТД выбрасываются в атмосферу. Тяга при работе этих двигателей возникает за счет разности количеств движения (произведения массы на скорость), выходящего из выпускной системы газовоздушного потока и входящего в приемное устройство ГТД воздуха. Тяга направлена при этом в сторону, противоположную направлению истечения газов, т. е. является реактивной. Нетрудно представить себе, что для увеличения тяги реактивного двигателя необходимо увеличить разность количеств движения, т. е. на выходе из ГТД произведение массы на скорость должно значительно превышать такую же величину на входе. Решению этой задачи служат все элементы конструкции ГТД.
Существуют три типа газотурбинных двигателей: турбореактивные, турбореактивные двухконтурные и турбовинтовые. Рассмотрим принцип работы каждого типа двигателя.
Сфера использования газотурбинных двигателей
Как правило, газотурбинные двигатели используются в грузовых автомобилях, кораблях и локомотивах. Производятся опыты по разработке таких механизмов для легковых автомобилей.
В настоящее время существует большое количество моделей таких двигателей, многие из которых значительно превосходят своих предшественников большей производительностью, меньшими размерами, габаритами и весом. Также газотурбинный двигатель является более безопасным и нейтральным для окружающей среды. Он производит меньше шума и вибрации, а также расходует намного меньше топлива. Это основные преимущества, которыми обладает газотурбинный двигатель.
Именно газотурбинные механизмы подарили человечеству множество современных возможностей. Без них не существовали бы трансконтинентальные перекачки газа и перелеты больших авиалайнеров на большие расстояния. Газотурбинный двигатель способен вырабатывать огромное количество энергии с минимальными затратами топливных ресурсов. Он представляет собой самую сложную технологическую конструкцию среди всех, что были разработаны за прошедший век.
Итак, газотурбинный двигатель являет собой одно из самых грандиозных открытий двадцатого века, благодаря которому человечество получило колоссальные возможности для совершенствования технологий. Особенно ценным вкладом данной разработки становится то, что она позволяет экономить топливные ресурсы и практически не несет вреда окружающей среде, что крайне важно в наше время глобальных экологических кризисов.