на каком расстоянии глаз способен заметить звезды подобные солнцу
Расстояния до звезд
Как далеки от нас звезды?
Сколько бы мы ни вглядывались в небо темной ночью, простые наблюдения не дадут нам ответа на этот вопрос. Очевидно, что звезды очень далеки — они дальше солнца и луны (наш спутник частенько покрывает собой звезды), и, по всей вероятности, дальше всех планет. Но вот насколько далеко?
Николай Коперник был первым астрономом, который перевел рассуждения на эту тему в практическую плоскость. Как известно, Коперник построил теорию, согласно которой в центр мира помещалось Солнце, а не Земля. Это допущение помогло упростить теорию движения планет, а также объяснило некоторые странности в их поведении. Согласно Копернику Земля также вращалась вокруг Солнца — по широкой орбите с периодом в один год. Как следствие, звезды должны были видеться под разным углом в разные сезоны, скажем, весной и осенью, когда Земля находится на противоположных участках своей орбиты.
Коперник пытался найти эти смещения — параллаксы звезд, наблюдая за высотой нескольких избранных звезд на протяжении года. Но звезды не показывали никаких смещений. Очевидно, они находились слишком далеко для того, чтобы их параллаксы можно было заметить невооруженным глазом.
Даже изобретение телескопа не помогло астрономам решить этот вопрос. Параллаксы были настолько малы, что трудности при их определении многократно превышали возможности астрономов XVII-XVIII веков. Первые параллаксы были успешно измерены лишь около двухсот лет назад, после возникновения прецизионной техники наблюдений. Оказалось, что звезды находятся невероятно далеко — в несколько раз дальше, чем предполагали многие не самые оптимистические расчеты. Только вдумайтесь — даже свет, способный долететь от Земли до Луны менее чем за полторы секунды, тратит годы на путешествие от звезд к Земле! Столь большие расстояния невозможно себе даже представить!
Но и среди звезд есть такие, которые находятся к нам ближе, чем большинство, а есть такие, которые находятся дальше.
Возьмем для примера звезды Летнего треугольника — главного рисунка летнего неба. Две звезды из трех — Вега и Альтаир — относительно близки к нам. От Веги до Земли свет идет порядка 25 лет. Это эквивалентно расстоянию в 240 триллионов километров. Альтаир находится еще ближе — эта звезда входит в сотню ближайших звезд к Солнцу. Расстояние до нее измеряется 17 световыми годами.
Вега, Альтаир и Денеб — три звезды летнего треугольника, имеющие схожий блеск, но находящиеся от нас на разном расстоянии. Рисунок: Stellarium
Совсем другое дело Денеб, самая тусклая звезда в составе Летнего Треугольника, формирующая его левый верхний угол. Расстояние до Денеба столь велико, что обычным способом его не измерить — погрешность измерений велика. Для таких далеких космических объектов астрономам пришлось разработать специальные, косвенные, методы определения расстояний. Эти методы не очень точны на малых расстояниях, но хорошо работают на расстояниях в тысячи световых лет.
Оказалось, что расстояние до Денеба равняется 2750 световых лет. Эта звезда находится в 160 раз дальше от нас, чем Альтаир, и в 110 раз дальше Веги!
Сравнение Солнца (желтый кружок) и голубой звезды-сверхгиганта Денеба. Рисунок: Большая Вселенная
Денеб очень необычная звезда. Вега и Альтаир, помещенные на ее место, были бы совершенно не видны простым глазом, а Денеб наблюдается прекрасно, менее, чем вдвое уступая в блеске Альтаиру. Очевидно, яркость Денеба очень велика. Действительно, Денеб обладает совершенно фантастической светимостью — только 196000 солнц дадут такой же поток излучения, как эта голубовато-белая звезда! Посмотрите ночью на звездное небо: на нем вы не найдете звезд более высокой светимости. Ни одна из звезд, видимых невооруженным глазом (может быть, за исключением Ригеля), не светит так интенсивно, как Денеб.
Все эти ошеломительные факты о звездах стали известны исключительно благодаря тому, что мы научились определять расстояния в космосе. Но на достигнутом астрономы останавливаться не собираются: сейчас в космосе работает европейский космический телескоп Gaia, цель которого — собрать параллаксы более чем миллиарда звезд с невиданной точностью. Через несколько лет данные с Gaia помогут более точно вычислить расстояние до Денеба, и даже до еще более далеких звезд. Это позволит астрономам построить первую трехмерную карту Галактики.
Чтобы найти внеземную жизнь, давайте не будем ориентироваться на звезды, похожие на наше Солнце
Чтобы максимально увеличить наши шансы найти внеземную жизнь в нашей Галактике, астрономы рекомендуют не фокусироваться на звездах, похожих на наше Солнце. Но отдавать предпочтение скорее оранжевым карликам.
Мы не можем сосчитать все звезды в Млечном Пути, но по статистике их должно быть более 100 миллиардов и как минимум столько же планет. Диапазон поэтому довольно широк. Чтобы в один прекрасный день мы смогли обнаружить сложную внеземную форму жизни, нам следует сосредоточиться на звездах, которые, скорее всего, будут способствовать ее появлению. Но тогда, что это за звезды?
У Солнца слишком короткая продолжительность жизни
Интуитивно можно сказать, что звезды типа Солнца являются наиболее подходящими. Тем не менее эти звезды составляют всего 10% звездной численности Млечного Пути. Срок их жизни также довольно короткий (около 10 миллиардов лет).
Сложные организмы появились на Земле всего 500 миллионов лет назад. Человек, самая сложная из них форма жизни, появился лишь 200 000 лет назад. Мы не знаем, каким будет будущее нашего вида, но, с другой стороны, мы знаем, что наша планета станет необитаемой через чуть более миллиарда лет. Солнце начнет расширятся, уничтожая все земные формы жизни.
Если мы, таким образом, основываемся только на Земле, это означает, что очень сложная форма жизни вокруг звезды типа Солнца не может выжить более миллиарда лет. С космологической точки зрения это довольно короткий промежуток времени. Если мы хотим дать себе шанс оценить такую передовую форму жизни, как наша, поэтому мы должны нацелиться на звезды, способные “гореть» дольше.
Долгие годы все взоры обращались к красным карликам. Эти звезды, меньше и прохладнее Солнца, являются самыми распространенными звездами в Галактике (около 85% населения). Тогда мы могли бы представить себе, простым статистическим маневром, что 85 % всех планет также эволюционируют вокруг этих звезд. Кроме того, мы знаем, что красные карлики могут выжить в течение нескольких десятков миллиардов лет.
Но являются ли они идеальными кандидатами? Не совсем. У красных карликов много преимуществ, но они очень нестабильны.
На этих звездах звездные извержения действительно происходят регулярно и очень мощно. Защитные озоновые слои, которые могут образовываться вокруг планет в зоне обитания (очень близко к звезде), не могут выжить, так как их постоянно сдувают. Наконец, планеты подвергаются экстремальным уровням рентгеновского и ультрафиолетового (УФ) излучения. Что затрудняет развитие жизни в этих условиях.
Художественное представление красного карлика. Кредиты: НАСА / Уолт Феймер
Оранжевые карлики, хороший компромисс.
К каким звездам мы, в конце концов, обращаемся? В течение нескольких лет астрономы сосредоточились на оранжевых карликах. Зачем? Потому что их в Млечном Пути втрое больше, чем звезд типа Солнца, с одной стороны. Но прежде всего потому, что эти звезды предлагают нам реальный компромисс. Они действительно могут регулярно гореть в течение десятков миллиардов лет, оставаясь относительно спокойными.
Поэтому для биологической эволюции вокруг этих звезд может потребоваться время, чтобы развиваться, не опасаясь быть уничтоженным в любой момент.
Некоторые из них уже доставили нам многообещающие зацепки. Это, в частности, относится к Кеплеру-442, расположенному примерно в 1120 световых годах от Земли. Вокруг этой звезды находится скалистая планета Kepler-442b, которая имеет объем, сравнимый с земным. Мы знаем, что этот мир развивается в обитаемой зоне, а это значит, что на его поверхности может быть вода в жидком виде.
Ближе к нам также находится Тау Кита, всего в 12 световых годах. Эта звезда будет сопровождаться пятью планетами, две из которых будут расположены в обитаемых зонах.
Каковы пределы человеческого зрения?
В сетчатке каждого из наших глаз расположено примерно 126 млн светочувствительных клеток. Мозг расшифровывает получаемую от этих клеток информацию о направлении и энергии попадающих на них фотонов и превращает ее в разнообразие форм, цветов и интенсивности освещения окружающих предметов.
У человеческого зрения есть свои пределы. Так, мы не способны ни увидеть радиоволны, излучаемые электронными устройствами, ни разглядеть невооруженным глазом мельчайшие бактерии.
Сперва рассмотрим этот порог с точки зрения нашей способности различать цвета — пожалуй, самой первой способности, которая приходит на ум применительно к зрению.
Колбочки отвечают за цветовосприятие, а палочки помогают нам видеть оттенки серого цвета при низком освещении
В человеческом глазе есть три вида колбочек и соответствующее им число типов опсинов, каждый из которых отличается особой чувствительностью к фотонам с определенным диапазоном длин световых волн.
Колбочки S-типа чувствительны к фиолетово-синей, коротковолновой части видимого спектра; колбочки M-типа отвечают за зелено-желтую (средневолновую), а колбочки L-типа — за желто-красную (длинноволновую).
Автор фото, Thinkstock
Не весь спектр полезен для наших глаз.
Из всех существующих в природе фотонов наши колбочки способны фиксировать лишь те, которые характеризуются длиной волн в весьма узком диапазоне (как правило, от 380 до 720 нанометров) – это и называется спектром видимого излучения. Ниже этого диапазона находятся инфракрасный и радиоспектры – длина волн низкоэнергетических фотонов последнего варьируется от миллиметров до нескольких километров.
В здоровом глазе хрусталик блокирует волны ультрафиолетового диапазона, но при его отсутствии человек способен воспринимать волны длиной примерно до 300 нанометров как бело-голубой цвет.
В исследовании 2014 г. отмечается, что в каком-то смысле мы все можем видеть и инфракрасные фотоны. Если два таких фотона практически одновременно попадут на одну и ту же клетку сетчатки, их энергия может суммироваться, превратив невидимые волны длиной, скажем, в 1000 нанометров в видимую волну длиной в 500 нанометров (большинство из нас воспринимает волны этой длины как холодный зеленый цвет).
Сколько цветов мы видим?
В глазе здорового человека три типа колбочек, каждый из которых способен различать около 100 различных цветовых оттенков. По этой причине большинство исследователей оценивает количество различаемых нами цветов примерно в миллион. Однако восприятие цвета очень субъективно и индивидуально.
Сколько нам нужно фотонов, чтобы увидеть источник света?
Как правило, колбочкам для оптимального функционирования требуется гораздо больше света, чем палочкам. По этой причине при низком освещении наша способность различать цвета падает, а за работу принимаются палочки, обеспечивающие черно-белое зрение.
В идеальных лабораторных условиях на тех участках сетчатки, где палочки по большей части отсутствуют, колбочки могут активироваться при попадании на них всего нескольких фотонов. Однако палочки справляются с задачей регистрации даже самого тусклого света еще лучше.
После операции на глазе некоторые люди приобретают способность видеть ультрафиолетовое излучение
В 1941 г. исследователи из Колумбийского университета провели эксперимент – испытуемых заводили в темную комнату и давали их глазам определенное время на адаптацию. Для достижения полной чувствительности палочкам требуется несколько минут; именно поэтому, когда мы выключаем в помещении свет, то на какое-то время теряем способность что-либо видеть.
Затем в лицо испытуемым направляли мигающий сине-зеленый свет. С вероятностью выше обычной случайности участники эксперимента регистрировали вспышку света при попадании на сетчатку всего 54 фотонов.
Не все фотоны, достигающие сетчатки, регистрируются светочувствительными клетками. Учитывая это обстоятельство, ученые пришли к выводу, что всего пяти фотонов, активирующих пять разных палочек в сетчатке, достаточно, чтобы человек увидел вспышку.
Самый маленький и самый удаленный видимые объекты
Следующий факт может вас удивить: наша способность увидеть объект зависит вовсе не от его физических размеров или удаления, а от того, попадут ли хотя бы несколько излучаемых им фотонов на нашу сетчатку.
Автор фото, Thinkstock
Глазу достаточно небольшого количества фотонов, чтобы увидеть свет
В учебниках по психологии часто встречается утверждение о том, что в безоблачную темную ночь пламя свечи можно заметить с расстояния до 48 км. В реальности же наша сетчатка постоянно бомбардируется фотонами, так что один-единственный квант света, излученный с большого расстояния, просто затеряется на их фоне.
Чтобы представить себе, насколько далеко мы способны видеть, взглянем на ночное небо, усеянное звездами. Размеры звезд огромны; многие из тех, что мы наблюдаем невооруженным взглядом, достигают миллионов км в диаметре.
Однако даже самые близкие к нам звезды расположены на расстоянии свыше 38 триллионов километров от Земли, поэтому их видимые размеры настолько малы, что наш глаз не способен их различить.
С другой стороны, мы все равно наблюдаем звезды в виде ярких точечных источников света, поскольку испускаемые ими фотоны преодолевают разделяющие нас гигантские расстояния и попадают на нашу сетчатку.
Автор фото, Thinkstock
Острота зрения снижается по мере увеличения расстояния до объекта
Все отдельные видимые звезды на ночном небосклоне находятся в нашей галактике – Млечном Пути. Самый удаленный от нас объект, который человек в состоянии разглядеть невооруженным глазом, расположен за пределами Млечного Пути и сам представляет собой звездное скопление – это Туманность Андромеды, находящаяся на расстоянии в 2,5 млн световых лет, или 37 квинтильонов км, от Солнца. (Некоторые люди утверждают, что особо темными ночами острое зрение позволяет им увидеть Галактику Треугольника, расположенную на удалении около 3 млн световых лет, но пусть это утверждение останется на их совести.)
Туманность Андромеды насчитывает один триллион звезд. Из-за большой удаленности все эти светила сливаются для нас в едва различимое пятнышко света. При этом размеры Туманности Андромеды колоссальны. Даже на таком гигантском расстоянии ее угловой размер в шесть раз превышает диаметр полной Луны. Однако до нас долетает настолько мало фотонов из этой галактики, что она едва различима на ночном небе.
Предел остроты зрения
Почему же мы не способны разглядеть отдельные звезды в Туманности Андромеды? Дело в том, что у разрешающей способности, или остроты, зрения есть свои ограничения. (Под остротой зрения подразумевается способность различать такие элементы, как точка или линия, как отдельные объекты, не сливающиеся с соседними объектами или с фоном.)
Фактически остроту зрения можно описывать так же, как и разрешение компьютерного монитора — в минимальном размере пикселей, которые мы еще способны различать как отдельные точки.
15 самых ярких звезд в небе | На основе видимой величины
Яркость звездного объекта или любого астрономического объекта в космосе измеряется его видимой величиной с Земли. Видимая величина объекта определяется его расстоянием от Земли, собственной светимостью и любыми возможными помехами (в основном межзвездной пылью) на луче зрения звезды.
Другой критерий измерения яркости звезд известен как абсолютная величина. Он измеряет светимость небесного объекта, наблюдаемую с фиксированного расстояния 32,6 световых года или 10 парсеков. Ниже приведен список самых ярких звезд, расположенных относительно близко к нашей планете, в зависимости от их видимой величины (без учета Солнца).
15. Антарес
Это ложноцветное инфракрасное изображение, показывающее Антарес в ярко-белом цвете.
Расстояние от Земли: 550 световых лет.
Видимая величина: 0,6–1,6.
Текущая стадия эволюции: красный сверхгигант.
Согласно самым последним оценкам, Антарес имеет массу между 11 до 14,3 М ☉ и радиусом R 680 ☉ (приблизительно). Если его разместить в центре солнечной системы (вместо Солнца), Антарес, вероятно, поглотит орбиту планеты Юпитер.
14. Альдебаран
Расстояние от Земли: 65,3 световых года.
Видимая величина: +0,86.
Текущая стадия эволюции: Красный гигант.
Согласно нынешней модели звездной эволюции, светимость Альдебарана примерно в 425 раз больше, чем у Солнца (хотя он всего на 50 процентов массивнее Солнца).
Пионер 10, один из старейших и самых дальних космических зондов НАСА, движется в направлении Альдебарана и должен приблизиться к нему примерно через два миллиона лет.
13. Акрукс
Расстояние от Земли: 320 световых лет.
Видимая величина: +0.76.
12. Альтаир
Расстояние от Земли: 16,73 световых года.
Видимая величина: +0,76.
Текущая стадия эволюции: звезда главной последовательности А-типа.
Наряду с Вегой и Денебом, Альтаир образуют астеризм Летнего Треугольника, воображаемый треугольник, соединяющий звезды из трех разных созвездий: Орла, Лиры и Лебедя соответственно.
Интерферометрические исследования показали, что у звезды есть сплющенные полюса из-за большой скорости ее вращения.
11. Бета Центавра
Расстояние от Земли: 390 световых лет.
Видимая величина: +0.61.
Ее совокупная визуальная величина +0,61 делает Бету Центавра второй по яркости звездой в созвездии Центавра после нашей соседки Альфы Центавра.
Кроме того, Бета Центавра демонстрирует быстрые изменения в своей яркости и, таким образом, классифицируется как переменная Beta Cephei. Эти изменения яркости, однако, незначительны и не могут быть замечены невооруженным глазом.
10. Бетельгейзе
Расстояние от Земли: 727 световых лет.
Видимая величина: +0,50.
Текущая стадия эволюции: Красный сверхгигант.
Бетельгейзе, также известная как Альфа Ориона, является второй по яркости звездой в созвездии Ориона. Это полурегулярная переменная звезда, величина которой колеблется от 0,3 до +1,8, и это самая большая из известных звезд первой величины.
Об изменениях яркости Бетельгейзе впервые сообщил сэр Джон Гершель между 1836 и 1840 годами. В течение этого периода Гершель наблюдал резкие изменения в величине звезды, когда она многократно превосходила, обычно более яркую, звезду Ригеля.
Между 1927 и 1941 годами, согласно данным Американской ассоциации наблюдателей за переменными состояниями, минимальная наблюдаемая звездная величина Бетельгейзе составляла 1,2.
Согласно текущим оценкам, масса Бетельгейзе может быть от 10 до чуть более 20 раз больше массы Солнца. Это одна из самых массивных звезд, которую можно наблюдать невооруженным глазом.
9. Ахернар
Расстояние от Земли: 139 световых лет.
Видимая величина: +0,46.
Ахернар, обозначаемый как Альфа Эридана, представляет собой двойную звездную систему, расположенную в созвездии Эридана. Двумя компонентами звездной системы являются Альфа Эридана A и B. Более яркая из двух, Эридана A, классифицируется как звезда главной последовательности B-типа, одна из самых ярких из всех известных типов звезд.
Звезда примерно в 3150 раз ярче Солнца и в семь раз массивнее. Ахернар лучше всего наблюдать из южного полушария на 33 градусе южной широты, в то время как он становится невидимым выше 33 градуса северной широты.
8. Процион
Процион ( вверху слева ), Бетельгейзе ( вверху справа ) и Сириус ( внизу ) образуют Зимний треугольник. Орион справа. Вид из северного полушария.
Расстояние от Земли: 11,46 световых лет.
Видимая величина: +0,34.
Температура атмосферы Проциона А оценивается примерно в 6 530 К, а его светимость примерно в семь раз больше, чем у Солнца. Вместе с Сириусом и Бетельгейзе Процион образует астеризм Зимнего треугольника.
7. Ригель А
Расстояние от Земли: 860 световых лет.
Видимая величина: 0,13.
Текущая стадия эволюции: синий сверхгигант.
Ригель классифицируется как переменная Альфа Лебедя, группа переменных звезд, которые одновременно демонстрируют сжатие на одной части и расширение на другой части поверхности звезды. Его яркость (видимая величина) колеблется от 0,05 до 0,18.
Хотя Ригель обычно является самой яркой звездой в созвездии Ориона, в разных случаях ее затмевает красный сверхгигант Бетельгейзе.
6. Капелла Аа / Аб
Компоненты Капеллы по сравнению с Солнцем
Расстояние от Земли: 42,9 световых года.
Видимая величина: +0,08.
Текущая стадия эволюции: Красный гигант, главная последовательность.
Самый выдающийся из четырех, Капелла Аа, представляет собой красный гигант, масса которого в 2,5 раза больше массы Солнца, но при этом почти в 79 раз ярче. Его двойная спутница, Капелла Ab (субгигант), немного меньше и менее ярка. Вторая пара, Capella H и L, намного меньше и тусклее красных карликов.
5. Вега
Расстояние от Земли: 25,4 световых года.
Видимая величина: +0,03.
Текущая стадия эволюции: Главная последовательность.
Вега, также известная как Альфа Лиры, является одной из наиболее изученных звезд в непосредственной близости от Солнца. Это была одна из первых звезд, расстояние до которых было оценено с помощью смещения звездного параллакса. Звезда также используется в астрофотографии (для калибровки фотометрической яркости).
По мере приближения звезды к Северному небесному полюсу в результате прецессии Земли — примерно через 12 тыс. лет — Вега станет полярной звездой Северного полушария. Её текущее склонение + 38 ° 47′.
4. Арктур
Оптическое изображение Арктура
Арктур - самая яркая звезда в созвездии Волопаса и северном небесном полушарии. Её затмевают только три звезды на ночном небе. Хотя звезда всего в 0,8 раза массивнее Солнца, она в 25 раз больше и в 170 раз ярче.
В 1635 году Арктур стал первой звездой (кроме Солнца и сверхновых), которую в дневное время наблюдал в телескоп французский астроном Жан-Батист Морен.
3. Альфа Центавра A
Широкоугольное изображение Альфы Центавра A, созданное DSS2
Расстояние между Проксимой Центавра и Альфой Центавра AB оценивается примерно в 0,21 светового года (в сторону Солнечной системы).
Самая выдающаяся из трех звезд, Альфа Центавра A, также известная как Ригил Кентавр, немного массивнее и в 1,519 раза ярче Солнца. Однако её двойная спутница немного менее массивна и в два раза светлее звезды в нашей Солнечной системе.
2. Канопус
Изображение Канопуса, сделанное с Международной космической станции
Считается, что светимость Канопуса в 10700 раз больше, чем у Солнца, при этом он примерно в восемь раз массивнее. До запуска спутника Hipparcos в 1989 году расчетное расстояние между Солнцем и Канопусом составляло от 90 до 1200 световых лет.
1. Сириус
HST-изображение Сириуса A и B | Изображение предоставлено: НАСА.
Сириус а более чем в два раза массивнее Солнца, а её светимость в 25 раз больше. Её абсолютная величина составляет +1,42. Её спутник, Сириус Б, значительно менее массивен и светящийся.
Хотя Сириус удивительно менее светит, чем Канопус и даже Ригель, она выглядит гораздо ярче из-за своего расстояния от земли (внутренняя светимость).
Сириус имеет большое мифологическое значение. Древние греки боялись Сириуса и считали, что он приносит жаркое лето как наказание для человечества. Напротив, египтяне поклонялись Сириусу как богине плодородия.