на каком сроке беременности формируется нервная система плода
На каком сроке беременности формируется нервная система плода
Этот период развития продолжается от 12 до 40 нед беременности.
В плодный период практически все органы и системы плода находятся в физиологическом состоянии функциональной незрелости, что и определяет своеобразие ответных реакций плода на внешние воздействия.
Согласно теории системогенеза, предложенной известным физиологом П.К.Анохиным, развитие отдельных систем у плода происходит неравномерно, при этом избирательно и ускоренно развиваются те функциональные системы, которые в первую очередь необходимы для адаптации его организма к условиям внеутробной жизни. Эта закономерность становится отчетливо заметной при рассмотрении особенностей внутриутробного развития нервной, сердечно-сосудистой, кроветворной, эндокринной и других систем.
Нервная система.
Эта система закладывается очень рано. Образование нервной трубки и мозговых пузырей отмечается уже в течение первых недель онтогенетического развития, что можно идентифицировать на эхограммах с 8_9 нед беременности, на 2-м месяце внутриутробной жизни формируются элементы рефлекторной дуги. С этого времени появляются первые двигательные рефлексы, которые хорошо заметны при ультразвуковом исследовании с 7—8 нед беременности. В дальнейшем двигательная активность плода принимает закономерный характер, в среднем составляя около трех движений за 10 мин. К 20—22 нед заканчивается период локальных проявлений рефлекторных реакций (при раздражении определенных участков тела) и появляются рефлексы более сложного характера. Например, на 21-й неделе внутриутробного развития у плода возникают первые спонтанные сосательные движения. Приблизительно в этот же период удается фиксировать появление первых электрических потенциалов мозга. К 24-й неделе двигательная активность плода внешне уже напоминает движения новорожденного ребенка.
К рефлекторным реакциям следует также отнести дыхательные движения плода. Некоторые авторы считают, что в результате дыхательных движении, которые отчетливо заметны при ультразвуковом исследовании, улучшается кровообращение плода, так как периодически возникающее понижение внурибрюшного давления способствует притоку крови в полые вены и усилению работы сердца. Дыхательные движения плода не имеют постоянного характера, они обычно сочетаются с периодами апноэ. Нельзя полностью исключить и такого предположения, что дыхательные движения плода являются подготовкой дыхательного аппарата к осуществлению его основной функции после рождения ребенка.
К концу внутриутробного периода в основном заканчивается формирование важнейших отделов центральной и периферической нервной системы плода. Однако кортикальные функции развиваются у ребенка после его рождения.
Процесс формирования нервной трубки и пороки развития
Процесс формирования нервной трубки называется нейруляцией. Нейруляция начинается с появления нервной пластинки, которая инвагинирует внутрь позвоночника, чтобы сформировать нейронную сеть с нервными канавками по обеим сторонам позвоночника. Постепенно, нейронные канавки сближаются друг с другом по средней линии позвоночника и сливаются, таким образом преобразовывая нейронные канавки в нервную трубку.
При нарушении нейруляции на этапах смыкания нервной трубки обнаруживаются врожденные пороки развития, такие как:
и другие дефекты центральной нервной системы. Дефекты закрытия нервной трубки встречаются довольно редко. При серьёзных дефектах развития невральной трубки, таких как анэнцефалия, расщепление позвоночника плод погибает в утробе матери или рождается нежизнеспособным и погибает в ближайшие дни после рождения. Современное оборудование помогает обнаружить пороки развития нервной трубки на регулярных обследованиях во время беременности. При ранней диагностике пороков развития нервной трубки показано прерывание беременности.
Формирование нервной трубки человека это сложное взаимодействие между генетическими и экологическими факторами. Некоторые гены имеют важное значение для формирования нервной трубки, но пищевые факторы, такие как уровень холестерина и фолиевой кислоты, также важны для правильного формирования нервной трубки. Учеными было подсчитано, что 50% дефектов закрытия нервной трубки у плода, можно предотвратить назначив беременной женщине препараты фолиевой кислоты и витамина B 12.
ВОЗ рекомендует всем женщинам на этапе планирования беременности, а так же беременным, принимать 400 мкг фолиевой кислоты ежедневно, чтобы уменьшить риск пороков развития нервной трубки.
Вся информация носит ознакомительный характер. Если у вас возникли проблемы со здоровьем, то необходима консультация специалиста.
Вы используете устаревший браузер. Пожалуйста обновите свой браузер.
Развитие мозга плода.
Развитие мозга плода.
️Как развивается мозг плода.
Нервная система плода начинает формироваться через 13 дней после оплодотворения.
На 28 день начинается формирование головного и спинного мозга
Интенсивный рост мозга начинается с 7 недели беременности.
На 17 неделе начинается формирование клеток отвечающих за распознавание внешних раздражителей (вкус, свет, запах, звук или прикосновение).
Примерно на 26 неделе беременности появляются важные нервные пути, передающие импульсы от глаз, ушей, мышц и кожи к мозгу, на его поверхности наблюдаются первые борозды.
Реакция на свет и звук определяется на 25-28 неделе.
Способность контролировать дыхание формируется в 3 триместре.
Для того, чтобы мозг ребенка развивался правильно, женщине необходимо следить за своим питанием, оно должно быть разнообразным и полноценным. Блюда должны содержать такие витамины и микроэлементы, как группа витаминов В, железо, йод, омега-3.
Нельзя бесконтрольно принимать любые лекарственные препараты и пищевые добавки.
Позитивное влияние на развитие мозга плода оказывают физические упражнения при беременности, свежий воздух и полноценный сон.
На каком сроке беременности формируется нервная система плода
На сегодняшний день Перинатальный центр остается одним из медицинских учреждений, не перепрофилированных для лечения пациентов с коронавирусной инфекцией.
В период сложившейся эпидемиологической обстановки хотим обратить внимание, что у нас одноместные палаты, а это значит:
— вы сможете проводить время со своим малышом только наедине;
— ежедневный осмотр врачами малыша и мамы проводится в индивидуальном порядке в палате;
— отсутствуют контакты с другими пациентами;
— запрещены посещения родственниками;
— питание по графику с разграничением по времени;
— уникальная современная вентиляционная система, в каждой палате установлен фильтр тонкой очистки (Hepa H13),что дает 99% очистку воздуха от вирусов, бактерий и токсичной пыли.
При входе всем пациентам проводят измерение температуры тела, в случае повышения температуры более 37˚С пациент в Перинатальный центр не допускается.
Данные меры исключают риск заражения коронавирусной инфекцией.
Уважаемые пациенты!
В связи с ростом заболеваемости новой коронавирусной инфекцией (COVID-19) в Ярославской области, в соответствии с приказом Департамента здравоохранения и фармации Ярославской области от 04.10.2021 № 971/1 в ГБУЗ ЯО «Областной перинатальный центр» приостанавливается оказание плановой круглосуточной медицинской помощи по профилю ГИНЕКОЛОГИЯ, с целью обеспечения оказания населению экстренной медицинской помощи по профилю гинекология.
Информация о сроках возобновления плановых операций по профилю гинекология, будет размещена на сайте учреждения.
АКТУАЛЬНЫЕ НОВОСТИ!
Уважаемые пациенты.
⚡⚡⚡ Информация для сопровождающих лиц
В связи с повышенным риском распространения COVID-19 нахождение лиц, сопровождающих пациентов амбулаторных отделений, в здании Перинатального центра не допускается. Вход в здание Перинатального центра разрешен только сопровождающим недееспособных пациентов и пациентов с ограниченными возможностями.
⚡⚡⚡ Информация для пациентов с бесплодием, нуждающихся в проведении ВРТ
В соответствие с приказом Минздрава РФ от 31.07.2020 №803н «О порядке использования вспомогательных репродуктивных технологий, противопоказаниях и ограничениях к их применению», который вступил в силу 01.01.2021, наличие показаний к проведению программ ВРТ осуществляет лечащий врач. Он же оформляет направление на проведение лечение бесплодия методом ЭКО.
Для получения направления необходимо обратиться на консультацию к врачу-репродуктологу отделения охраны репродуктивного здоровья ГБУЗ ЯО «Областной перинатальный центр», который принимает решение о направлении на программу ЭКО. Запись по телефону регистратуры (4852) 78-81-96.
Развитие ребенка по неделям
Будущим мамам всегда любопытно, как идет развитие плода во время, когда его ждут с таким нетерпением. Поговорим и посмотрим на фото и картинки, как же растет и развивается плод по неделям.
Что же делает пузожитель целых 9 месяцев в животике у мамы? Что чувствует, видит и слышит?
Беременность: развитие плода по неделям
Начнем рассказ о развитии плода по неделям с самого начала — от момента оплодотворения. Плод возрастом до 8ми недель называют эмбрионом, это происходит до формирования всех систем органов.
Развитие эмбриона: 1-я неделя
Яйцеклетка оплодотворяется и начинает активно дробиться. Яйцеклетка направляется к матке, по пути освобождаясь от оболочки.
На 6—8й дни осуществляется имплантация яйца — внедрение в матку. Яйцо оседает на поверхность слизистой оболочки матки и используя хориальные ворсинки прикрепляется к слизистой матки.
Развитие эмбриона: 2–3 недели
Картинка развития эмбриона на 3-ей неделе.
Эмбрион активно развивается, начиная обосабливаться от оболочек. На данном этапе формируются зачатки мышечной, костной и нервной систем. Поэтому этот период беременности считают важным.
Развитие эмбриона: 4–7 недели
Развитие плода по неделям в картинках: неделя 4
Развитие плода по неделям фото: неделя 4
Фото эмбриона до 6й недели беременности.
Развитие плода по неделям фото: неделя 5
На 7й неделе определяются зачатки глаз, живот и грудь, а на ручках проявляются пальцы. У малыша уже появился орган чувств — вестибулярный аппарат. Длина эмбриона — до 12 мм.
Развитие плода: 8я неделя
Развитие плода по неделям фото: неделя 7-8
У плода определяется лицо, можно различить ротик, носик, ушные раковины. Головка у зародыша крупная и ее длина соотносится с длиной туловища; тельце плода сформировано. Уже существуют все значимые, но пока еще не полностью сформированные, элементы тела малыша. Нервная система, мышцы, скелет продолжают совершенствоваться.
Развитие плода на фото уже чувствительные ручки и ножки: неделя 8
У плода появилась кожная чувствительность в области ротика (подготовка к сосательному рефлексу), а позже в области личика и ладошек.
На данном сроке беременности уже заметны половые органы. Жаберные щели отмирают. Плод достигает 20 мм в длину.
Развитие плода: 9–10 недели
Развитие плода по неделям фото: неделя 9
Пальчики на руках и ногах уже с ноготками. Плод начинает шевелиться в животе у беременной, но мать пока не чувствует этого. Специальным стетоскопом можно услышать сердцебиение малыша. Мышцы продолжают развиваться.
Развитие плода по неделям фото: неделя 10
Вся поверхность тела плода чувствительна и малыш с удовольствием развивает тактильные ощущения, трогая свое собственное тельце, стенки плодного пузыря и пуповину. За этим очень любопытно наблюдать на УЗИ. Кстати малыш сперва отстраняется от датчика УЗИ (еще бы, ведь он холодный и непривычный!), а потом прикладывает ладошки и пяточки пытаясь потрогать датчик.
Удивительно, когда мама прикладывает руку к животу, малыш пытается освоить мир и старается прикоснуться своей ручкой «с обратной стороны».
Развитие плода: 11–14 недели
Развитие плода на фото ножки: неделя 11
У малыша сформированы руки, ноги и веки, а половые органы становятся различимы(вы можете узнать пол ребенка). Плод начинает глотать, и уж если ему что-то не по-вкусу, например, если в околоплодные воды (мама что-то съела) попало что-то горькое, то малыш станет морщиться и высовывать язык, делая меньше глотательных движений.
Кожица плода выглядит прозрачной.
Развитие плода: неделя 12
Фото плода 12 недель на 3d УЗИ
Развитие плода по неделям фото: неделя 14
Почки отвечают за производство мочи. Внутри костей образуется кровь. А на голове начинают расти волосики. Двигается уже более скоординировано.
Развитие плода: 15–18 недели
Развитие плода по неделям фото: неделя 15
Кожа розовеет, ушки и другие части тела, в том числе и лицо уже видны. Представьте, ребенок уже может открывать ротик и моргать, а также делать хватательные движения. Плод начинает активно толкаться в мамином животике. Пол плода возможно определить на УЗИ.
Развитие плода: 19–23 недели
Развитие плода по неделям фото: неделя 19
Развитие плода по неделям фото: неделя 20
Слуховые косточки костенеют и теперь способны проводить звуки, малыш слышит маму — биение сердца, дыхание, голос. Плод интенсивно прибавляет в весе, формируются жировые отложения. Вес плода достигает 650 г, а длина — 300 мм.
Легкие на данном этапе развития плода развиты настолько, что малыш в искусственных условиях палаты интенсивной терапии может выжить.
Развитие плода: 24–27 недели
Легкие продолжают развиваться. Теперь малыш уже засыпает и просыпается. На коже появляются пушковые волосики, кожа становится морщинистой и покрыта смазкой. Хрящи ушек и носика еще мягкие.
Развитие плода по неделям фото: неделя 27
Губы и ротик становятся чувствительней. Глазки развиваются, приоткрываются и могут воспринимать свет и жмурится от прямых солнечных лучей. У девочек большие половые губы пока не прикрывают малые, а у мальчиков яички пока не опустились в мошонку. Вес плода достигает 900–1200 г, а длина — 350 мм.
9 из 10 детей рожденных на данном сроке выживают.
Развитие плода: 28–32 недели
Теперь легкие приспособлены к тому, чтобы дышать обычным воздухом. Дыхание ритмичное и температура тела контролируются ЦНС. Малыш может плакать и отвечает на внешние звуки.
Ребенок открывает глазки бодрствуя и закрывает во время сна.
Кожа становится толще, более гладкой и розоватой. Начиная от данного срока плод будет активно прибавлять в весе и быстро расти. Почти все малыши преждевременно родившиеся на данном сроке жизнеспособны. Вес плода достигает 2500 г, а длина — 450 мм.
Развитие плода: 33–37 недели
Развитие плода по неделям фото: неделя 36
Плод реагирует на источник света. Прирастает тонус мышц и малыш может поворачивать и поднимать голову. На которой, волосики становятся шелковистыми. У ребенка развивается хватательный рефлекс. Легкие полностью развиты.
Развитие плода: 38–42 недели
Плод довольно развит, подготовлен к рождению и считается зрелым. У малыша отточены более 70-ти разных рефлекторных движений. За счет подкожной жировой клетчатки кожа малыша бледно-розовая. Головка покрыта волосиками до 3 см.
Развитие плода по неделям фото: неделя 40
Малыш отлично усвоил движения мамы, знает когда она спокойна, взволнована, расстроена и реагирует на это своими движениями. Плод за внутриутробный период привыкает к перемещениям в пространстве, поэтому малыши так любят когда их носят на руках или катают в коляске. Для младенца это совершенно естественное состояние, поэтому он успокоится и заснет, когда его покачают.
Ногти выступают за кончики пальчиков, хрящики ушек и носика упругие. У мальчиков яички опустились в мошонку, а у девочек большие половые губы прикрывают малые. Вес плода достигает 3200-3600 г, а длина — 480-520 мм.
После появления на свет малыш тоскует по прикосновениям к своему тельцу, ведь первое время он не может сам себя ощупывать — ручки и ножки не так уверенно слушаются ребенка как это было в околоплодных водах. Поэтому, чтобы ваш малыш не чувствовал себя одиноко, его желательно носить на руках, прижимать к себе поглаживая его тельце.
Эмбриональное развитие нервной системы позвоночных
Раннее развитие
Авторы
Нервная система всех позвоночных, включая человека, развивается из элементов наружного зародышевого листка – эктодермы. Этот процесс имеет определенные особенности у представителей разных групп, однако ему свойственны и общие для всех позвоночных закономерности.
В период гаструляции у высших позвоночных (у человека это конец 1-й недели развития и совпадает с имплантацией в стенку матки) происходят активные перемещения клеточного материала зародыша. В первой фазе гаструляции образуются два эмбриональных зародышевых листка – эпибласт (верхний листок) и гипобласт (нижний). Клетки эпибласта постепенно расходятся, образуя заполненную жидкостью амниотическую полость. Во второй фазе гаструляции небольшая группа клеток эпибласта, сформировавшая в дне амниотической полости зародышевый щиток, образует первичную полоску и гензеновский узелок. Последующая миграция клеток этих структур вглубь зародыша приводит к формированию среднего листка зародыша – мезодермы. Гаструляция завершается у всех позвоночных образованием трех зародышевых листков: эктодермы, мезодермы и энтодермы, а также формированием осевого комплекса зачатков органов. Особое значение на этом этапе развития принадлежит т.н. головному отростку (нотохорду), формирующемуся из мигрирующих клеток гензеновского узелка. К концу гаструляции формируются и все основные, соответствующие разным группам животных провизорные органы (желточный мешок, амнион, аллантоис, хорион, плацента), выполняющие защитные и питательные функции для эмбриона. Их число в ходе эволюции увеличивается. У человека гаструляция завершается к третьей недели внутриутробного развития.
Головной отросток дает начало развитию нотохорды – оси будущего зародыша. Клетки нотохорды и формирующейся затем хорды оказывают индуцирующее влияние на дифференцировку прилежащего к ним участка эктодермы в нервную пластинку и далее в нервную трубку (рис. 1). Как только развивается нотохорд, расположенная над ним эктодерма начинает утолщаться и формирует нервную пластинку, элементы которой интенсивно размножаются и дифференцируются, превращаясь в узкие цилиндрические нейроэпителиальные клетки, отличные от соседних клеток покровного эпителия. Основной причиной формирования нервной пластинки и замыкания ее в нервную трубку является преобразование нейроэпителиальных клеток, связанное с изменением ориентации компонентов их актинового цитоскелета. В результате интенсивного деления и неравномерного роста нейроэпителия происходит его инвагинация с последующим формированием нервной трубки.
Эмбриональное развитие ЦНС у млекопитающих и человека обычно разделяют на: эмбриональный (первые 6 недель), фетальный (с 6 до 24 недели) и перинатальный периоды (с 24 недели до рождения) (табл. 1).
Стадия развития | Возраст плода (недели) | Основные морфологические изменения в развитии мозга |
Эмбриональный период | ||
Формирование и разделение герминативного слоя | 2 | Нейрональная пластинка |
Дорсальная индукция: первичная нейруляция | 3–4 | Формирование: нервной трубки, нервного гребня и ее производных; закрытие рострального и каудального нейропоров; парных крыловидных пластинок |
Вентральная индукция: теленцефализация | 4–6 | Развитие конечного мозга и структур лица; формирование мозговых пузырей; развитие оптических и обонятельных плакод; появление зачатков ромбовидного мозга и мозжечка |
Фетальный период | ||
Нейрональная и глиальная пролиферация | 6–16 | Пролиферация клеток в вентрикулярной и субвентрикулярной зонах формирующихся отделов мозга, включая неокортекс; ранняя дифференциация нейробластов и глиобластов; процессы апоптоза; миграции клеток в стенке мозга |
Миграция | 12–24 | Миграция нейронов в формирующиеся отделы мозга; формирование мозолистого тела полушарий и других проекционных путей ЦНС |
Перинатальный период | ||
Регионализация | 24 – до рождения | Завершение процессов миграции и формирование основных отделов мозга; синаптогенез; созревание популяций нейронов и глиальных клеток |
Миелинизация | 24 – до 2х лет после рождения | Окончательное созревание морфологической структуры мозга; миелинизация основных трактов и связей; активное функциональное развитие важнейших отделов головного мозга (особенно ассоциативных областей полушарий) |
Содержание
Рис. 1. Схема ранней стадии развития зародыша человека (формирование головного отростка – нотохорды).
1 – головной отросток; 2 – эктодерма, 3 – первичная полоска, 4 – первичная ямка, 5 – энтодерма, 6 – формирующийся аллантоис, 7 – прехордальная пластинка, 8 – полость желточного мешка, 9 – амниотическая полость (по: Данилов, Боровая, 2016, с изменениями)
Рис. 3. Первичная индукция формирования нейроэпителия будущей нервной пластинки (по: Development of Nervous System, 2006, с изменениями).
Chd – хордин, Ng – ноггин, IMZ – эмбриональная мезодерма, BPM4 – костный морфогенетический белок, TGFr – рецептор к фактору роста опухолей
Рис. 4. Участие ряда сигнальных молекул, транскрипционных факторов и ростовых факторов в формировании нервной пластинки и нервной трубки на ранних этапах эмбриогенеза нервной системы (по: Development of Nervous System, 2006, с изменениями).
СH – хордин, NG – ноггин, FS – фоллистатин, Shh – sonic hedgehog, BMP – костный морфогенетический белок, FGF – фактор роста фибробластов, TGF – фактор роста опухолей, Pax3, 4, 6 – транскрипционные факторы, S – мезодермальные сомиты, NC – нервный гребень
Эмбриональный период (1–23 стадии по Carnegie)
В этот период развития на дорсальной стороне зародыша происходит обособление особого участка нейроэпителия и формирование нервной пластинки (neuronal plate) и начинаются процессы нейруляции.
На стадии нейруляции происходит формирование нескольких важных структур нервной системы: образуется нервная пластинка с последующим образованием нервной трубки и нервного гребня (рис. 2). Нейруляция у человека начинается в конце 3-й недели и полностью завершается к концу 4-й недели.
Вскоре после образования нервной пластинки (приблизительно на 18-е сутки у человека) она прогибается вдоль продольной оси, ее края приподнимаются и формируются нервный желобок и нервные валики. Позднее края нервных валиков смыкаются по срединной линии и образуется замкнутая нервная трубка. Краниальный и каудальный участки нервной трубки долго остаются незамкнутыми, их называют соответственно передним и задним нейропорами. Передний нейропор закрывается на 23–26-й день развития, а задний – на 26–30-й день.
Процесс нейрональной индукции связан с синтезом ряда биологически активных соединений, которые действуют на формирование нервной пластинки и нервной трубки. На клетки первичной эктодермы действует большое количество сигнальных молекул, индуцирующих процесс образования нейроэпителия и нейрональных стволовых клеток, из которых будут формироваться все элементы нервной ткани. Среди этих факторов необходимо отметить хордин (chordin), ноггин (noggin) и фоллистатин (follistatin), синтезируемые клетками первичной мезодермы, образующей нотохорду (будущая хорда и позвоночник). Они блокируют действие другого морфо-генетического фактора – BMP (bone morphogenetic protein), синтезируемого клетками эктодермы и индуцируют их дифференцировку в направлении образования нейроэпителия нервной пластинки (рис. 3).
Уже на ранних этапах развития зародыша нервная трубка на значительном протяжении разделяется проходящей по вентрикулярной поверхности пограничной бороздой, sulcus limitans, на два отдела: дорсальный – крыловидную пластинку, и вентральный – базальную пластинку. Участки мозга, развивающиеся из крыловидной пластинки, содержат ассоциативные и сенсорные ядра, из базальной – моторные и вегетативные. Самая ростральная часть (prosencephalon) не содержит базальной пластинки и целиком происходит из крыловидной. Отделы головного мозга, содержащие производные обеих пластинок – средний, задний, продолговатый – часто объединяют названием «ствол мозга».
На этапе формирования нервных желобков дифференцировку вентральной части нервной трубки (базальной пластинки) и развитие мотонейронов оказывает регулирующее влияние фактор Shh (sonic hedgehog) секретируемый сначала нотохордой, а затем хордой и вентральной частью самой нервной трубки. Дорсальную часть нервной трубки (крыловидную пластинку) контролируют морфогенетические белки BMP4 и MBP7, секретируемые клетками эктодермы, и ряд других ростовых и транскрипционных факторов: Pax 3, 4, 6 – транскрипционные факторы, FGF8 – фактор роста фибробластов, GDNF – нейротрофический фактор глии, BDNF, NT3,4 – нейротрофические факторы мозга и др. (рис. 4).
Нервная трубка на ранних стадиях эмбриогенеза представляет собой многорядный нейроэпителий, состоящий из нейроэпителиальных клеток. В дальнейшем в нервной трубке дифференцируется 4 концентрических зоны:
Вентрикулярная (VZ) зона состоит из делящихся клеток цилиндрической формы. Вентрикулярные или иначе матричные клетки являются по сути нейрональными стволовыми клетками, т.е. предшественниками нейронов и клеток макроглии. Субвентрикулярная зона (SVZ) состоит из клеток, сохраняющих высокую пролиферативную активность и являющихся потомками матричных клеток. Промежуточная (плащевая или мантийная) зона (PZ) состоит из клеток, переместившихся из вентрикулярной и субвентрикулярной зон – это зона активной миграции и дифференцировки молодых нейронов (нейробластов) и глии (глиобластов). Наружная (маргинальная MZ) зона содержит нервные волокна и отростки находящихся ниже нейронов. Нейробласты достигают мест своего окончательного расположения в структурах ЦНС; утрачивают способность к делению и в дальнейшем дифференцируются в зрелые нейроны. Глиобласты продолжают делиться и дают начало новым популяциям глиальных клеток: астроцитам и олигодендроцитам.
Образование нервного гребня
После смыкания валиков и образования нервной трубки, на ее боковых поверхностях выселяется группа клеток, формирующих т. н. нервный гребень (neural crest) (рис. 2). Клетки нервного гребня активно и целенаправленно мигрируют на большие расстояния в зародыше и способны дифференцироваться в разнообразные зрелые элементы тканей и органов. Миграция клеток определяется не только и не столько наличием свободного межклеточного пространства и отсутствием механических преград на пути перемещения, сколько взаимодействием мигрирующих клеток с молекулами межклеточного матрикса (коллаген, ламилин, фибронектин, аминоглюкозгликаны и др.). Формирование фенотипа клеток нервного гребня определяют многочисленные ростовые и дифференцирующие факторы, действующие на клетки гребня по ходу их миграции. В качестве примера можно привести процесс дифференцировки клеток туловищного отдела нервного гребня в нейроны симпатических ганглиев или в клетки хромаффинной ткани мозгового вещества надпочечников (рис. 5).
Клетки нервного гребня образуются почти на всём протяжении замыкающейся нервной трубки. Клетки из различных участков нервного гребня дифференцируются не одинаково. Разная дифференцировка клеток наблюдается как по длине гребня, так и по глубине залегания в нем. Из гребня могут образовываться и нервные узлы и большая часть структур черепа. Уникальность этой структуры позволила современным ученым даже считать нервный гребень четвертым зародышевым листком, наряду с эктодермой, энтодермой и мезодермой. Вот неполный список производных клеток нервного гребня:
Фетальный период развития (24–46 стадии по Carnegie)
В этот период развития происходят наиболее значительные события в развитии мозга. Сразу после завершения нейруляции и образования первичных мозговых пузырей, в стенке эмбрионального мозга начинаются интенсивные процессы пролиферации и дифференцировки. Процессы пролиферации и дифференцировки захватывают широкую полосу клеток, расположенных между наружной (базальной) и внутренней (апикальной) поверхностями стенки мозговых пузырей. Они представляют собой нейрональные стволовые клетки (НСК) и развиваются из нейроэпителия нервной пластинки. НСК активно делятся и в процессе прохождения клеточного цикла претерпевают сложные превращения, связанные с последовательными перемещениями в нервной трубке. Перемещение осуществляются путем смешения ядросодержащих отделов клеток внутри формирующихся отростков. Этот процесс получил название интеркинетической ядерной миграции. Ядросодержащие тела клеток двигаются к поверхности нервной трубки, вблизи которой они остаются на некоторое время. Затем ядросодержащие отделы клеток опять перемещаются к вентрикулярной поверхности, после чего НСК втягивают свои отростки и вступают в очередной митотический цикл (M). В результате формируется одно из первых структурных образований развивающейся стенки нервной трубки – вентрикулярный слой (рис. 6а, б).
В настоящее время показано, что популяции клеток, составляющих вентрикулярный и формирующийся несколько позднее субвентрикулярный слой, неоднородна. Не все клетки, перемещающиеся в пределах стенки мозга во время митотического цикла, вступают в митоз у вентрикулярной поверхности. В зависимости от присутствия у клеток отростков и характера их контакта с поверхностями стенки мозга выделяют три класса клеток предшественников: монополярные, биполярные и неполярные (рис. 6в).
Биполярные клетки (или апикальные предшественники АР) представляют собой либо НСК клетки, либо клетки т. н. радиальной глии (RG), в которые НСК превращаются на самых ранних этапах нейрогенеза. Отличительной особенностью этих клеток является наличие отростков, контактирующих с апикальной и базальной поверхностями стенки мозга на всем протяжении клеточного цикла. Интеркинетические перемещения ядра происходят по этим отросткам и заканчиваются митозом у апикальной поверхности. Монополярные предшественники появляются на более поздних стадиях, когда в стенке мозга формируется субвентрикулярный слой, содержащий также как и вентрикулярный слой НСК. Ядра этих клеток претерпевают интеркинетические перемещения по цитоплазме отростков клеток предшественников, однако в процессе митотического цикла их апикальные или базальные отростки могут терять связь соответственно с апикальной или базальной поверхностями стенки мозга. Митозы происходят как в вентрикулярном слое, так и в верхней области субвентрикулярного слоя. Во внутренних слоях субвентрикулярной зоны у человека недавно были обнаружены клетки предшественники с неполярной морфологией. Характерной чертой этих клеток является ретракция отростков перед митозом и потеря их контакта с апикальной и базальной поверхностью стенки мозга. Они получили наименование «базальные предшественники (ВР).
Фактически мы имеем дело с двумя путями образования нейронов в развивающемся мозге. Это – путь прямого нейрогенеза, когда источником нейробластов являются непосредственно НСК и нейрогенная радиальная глия, т. е. апикальные предшественники с моно- или биполярной морфологией, и путь непрямого нейрогенеза, когда источником нейробластов служат промежуточные нейрональные предшественники, являющиеся потомками клеток радиальной глии, т. е. базальные предшественники. Непрямой путь кортикогенеза может выступать в роли быстрого увеличения количества нейронов в условиях ограниченного времени (каждое асимметричное деление радиальной глии через стадию промежуточного нейронального предшественника может давать два – четыре нейрона) и тем самым регулировать площадь и толщину стенки мозга.
Таким образом, на первых этапах формирования нервной системы, в стенке эмбрионального мозга формируется широкий слой пролиферирующих нейрональных предшественников разного типа, активность которых в дальнейшем приводит к формированию будущих популяций нервных и глиальных клеток в различных отделах мозга.
Рис. 6. Классические схемы перемещения клеток в вентрикулярном слое нервной трубки (а, б) и современное представление (в) о гетерогенности нейрональных предшественников. (по: Нейроонтогенез, 1985; Обухов, 2008, Pernavelas et al., 2002, с изменениями)
VZ, ISVZ,OSVZ, MZ – вентрикулярный, внутренний и наружный субвентрикулярный и маргинальный слои стенки мозга; apical, basal – апикальная (внутренняя) и базальная (наружная) поверхности мозговой стенки; Tc, Ts, G1, G2, M – стадии митотического цикла; I – период интерфазы; NB – нейробласт
Рис. 8. Схема развития мозговых пузырей (A) и формирования головной части зародыша позвоночных (Б) (по: Обухов, Андреева, 2017; Developmental neurobiology, 2005).
А: сомитомеры и мозговые пузыри костистых рыб и амниот (а), хрящевых рыб и амфибий (б). 1-11 – сомитомеры (будущие туловищные сомиты); 12 – закладка ушной капсулы; 13 – спинальный ганглий; 14, 15 – дорсальный (14) и вентральный (15) корешки спинномозгового нерва; 16 – полость целома; 17 – гипобранхиальная мускулатура; 18 – обонятельный орган, 19 – глазной пузырь; 20, 21 – жаберные щели (20) и дуги (21); III–X, XII – черепно-мозговые нервы
Рис. 10. Раннее развитие головного мозга и зоны экспрессии транскрипционных факторов, контролирующих формирование основных отделов головного мозга млекопитающих, вид сверху (А) и сбоку (Б) (Echevarria et al., 2003, с изменениями).
Pros, Tel, Die, Mes, Rhomb, Met, Myel – отделы головного мозга, Р1–Р6 – прозомеры, r1–r2 – ромбомеры, ANR – anterior neural ridge (передний мозговой организатор), ZLI – zona limitans interthalamica organizer (таламический организатор), ISO – isthmic organizer (организатор перешейка), SC, IC – верхние и нижние бугорки четверохолмия, P1–5 – прозомеры, r1–2 – ромбомеры; Pax 3/7, Ent, Otx, Foxg, Gbx – транскрипционные факторы и место их действия; стрелки – направление диффузии регулирующих факторов
Дифференцировка нервной трубки и формирование основных отделов мозга
Замыкание нервной трубки начинается в середине зародыша, затем процесс распространяется к головному и хвостовому концам эмбриона, где некоторое время остаются незамкнутыми отверстия – передний и задний нейропоры (рис. 7).
Рис. 7. Ранние этапы формирования нервной трубки на примере развития мозга человека (по: Nieuwenhuys R. et al., 1999).
A–D – реконструкция вида человеческого зародыша и начальных этапов формирования нервной трубки, E–H – поперечные срезы эмбриона на данных стадиях развития; 1 – эктодерма, 2 – нервная пластинка, 3 – отверстие амниона, 4 – мозговая пластинка, 5 – нервная складка, 6 – нервный желобок, 7 – нервная трубка, 8 – зачаток головного мозга, 9 – передний нейропор, 10 – задний нейропор, 11 – нервный гребень, 12 – крыловидная пластинка, 13 – латеральная пластинка, 14 – базальная пластинка, 15 – полость первичных мозговых желудочков, 16 – зачатки спинальных ганглиев
Еще на стадии замыкания нейропоров начинается ростро-каудальная дифференцировка нервной трубки зародыша. Нервная трубка (как полагают, под индуцирующим воздействием хорды) постепенно погружается в мезодерму зародыша и под влиянием мезодермальных сомитов разделяется на сегментарные участки – нейромеры или прозомеры. Сомиты располагаются по сторонам нервной пластинки и вдавливаются в нее, определяя конфигурацию будущих отделов мозга (рис. 8).
В дальнейшем головные сомиты сливаются и образуют три основных сегмента: премандибулярный, мандибулярный и гиоидный. Границей головных сегментов служит область ушной капсулы, за которой формируются от 2–3 до 10–12 туловищных сегментов (в зависимости от группы позвоночных). Параллельно формируется система черепно-мозговых нервов. Каждый сегмент иннервируется определенными парами нервов: премандибулярный – терминальным и глазодвигательным нервом (III); мандибулярный – тройничным (V) и блоковым (IV) нервами; гиоидный – отводящим (VI) и лицевым (VII) нервами. Следующие за головными два сегмента иннервируются соответственно языкоглоточным (IX) и блуждающим (X) нервами. Ростральные туловищные сомиты у высших позвоночных иннервируются системой добавочного нерва (XI), включающего в себя разное количество корешков в зависимости от числа туловищных сомитов. Подъязычный нерв (XII), иннервирующий гипобранхиальную мускулатуру, которая развивается из закладки туловищных сегментов, по своей функции аналогичен вентральным (соматомоторным) корешкам спинномозговых нервов, иннервирующих поперечнополосатую мускулатуру туловища и конечностей.
Передний конец трубки в конце 3-й недели развития из-за активных процессов пролиферации и миграции нейронов в стенке мозга расширяется и формирует 3 первичные мозговые пузыря. Лежащий краниально пузырь образует первичный передний мозг, Prosencephalon, средний пузырь – первичный средний мозг Mesencephalon, а из третьего пузыря развивается первичный задний мозг Rhombencephalon. Далее располагаются структуры формирующегося спинного мозга – Medulla spinalis (рис. 9).
Рис. 9. Развитие мозга человека (по: Шаде, Форд, 1976).
А–Б – стадии трех (а) и пяти (б–д) мозговых пузырей; вид сверху (А) и сбоку (Б); 1–3 – первичные: передний (1), средний (2), ромбовидный (№) мозг; 4 – закладка спинного мозга, 5 – глазной бокал, 6–10 – отделы мозга: конечный (6), промежуточный (7), средний (8), задний (9), продолговатый (10); 11 – полушария конечного мозга, 20 – мозжечок, 22 – спинной мозг, V–IX – черепно-мозговые нервы. Стрелки – изгибы нервной трубки (с. и. – среднемозговой, ш. и. – шейный, м. и. – мостовой)
Спинной мозг образуется из каудальных отделов нервной трубки. Он представляет собой часть ЦНС, в структуре которой наиболее отчетливо сохраняются черты эмбриональных стадий развития мозга позвоночных: трубчатый характер строения и сегментарность.
После формирования мозговых пузырей в нервной системе начинаются сложные процессы внутренней дифференцировки и роста. Уже на ранних этапах развития зародыша нервная трубка на значительном протяжении разделяется проходящей по вентрикулярной поверхности пограничной бороздой, sulcus limitans, на два отдела: дорсальный – крыловидную пластинку, и вентральный – базальную пластинку. Участки мозга, развивающиеся из крыловидной пластинки, содержат сенсорные ядра, из базальной – моторные и вегетативные. Ростральная часть нервной трубки не содержит базальной пластинки и целиком происходит из крыловидной. Отделы головного мозга, содержащие производные обеих пластинок – средний, задний, продолговатый – часто объединяют названием «ствол мозга».
Изменения в развитии нервной трубки сопровождаются образованием нескольких изгибов на границах закладки различных отделов мозга. В течение первых двух месяцев эмбрионального развития образуется основной (среднемозговой) изгиб, когда передний и промежуточный мозг загибаются вперед и вниз. Затем формируется еще два (шейный и мостовой) изгиба. Одновременно первый и третий первичные мозговые пузыри разделяются каждый на два. Наступает стадия пяти мозговых пузырей. Самым ростральным становиться конечный мозг (Telencephalon), затем – промежуточный (Diencephalon). За промежуточным идет средний мозг (Mesencephalon). Первичный задний мозговой пузырь разделяется на задний мозг (Metencephalon) и продолговатый мозг (Medulla oblongata). Прозенцефалон включает производные первых шести прозомеров (нейромеров) P1–P6. Из структур Р1 в дальнейшем формируется средний мозг. Прозомеры Р2 и Р3 развиваются соответственно в таламус и преталамус. Из прозомеров Р4–Р6 развивается конечный мозг и гипоталамус. Из более каудальных сегментов нервной трубки (ромбомеров) развиваются структуры ствола и спинного мозга.
После формирования мозговых пузырей (5–10 недели развития) в структурах формирующейся нервной системы происходят сложные процессы внутренней дифференцировки и роста различных отделов головного и спинного мозга.
Формирование отделов мозга находится под контролем т. н. «вторичных организаторов» – групп клеток, синтезирующих ряд морфогенетических факторов, градиент концентрации которых определяет направление миграции и дифференцировки разных структур мозга (табл. 2; рис. 9, 10).
Ген | Место экспрессии | Функция |
Dlx 1, Dlx 2, Dlx 5 | Субпаллиум (ганглионарные возвышения), промежуточный мозг | Миграция субпаллиальных нейробрастов, миграция нейронов в кору из ганглионарных возвышений переднего мозгового пузыря |
Emx 1, Emx 2 | Конечный мозг | Пролиферация клеток в развивающемся мозге, миграция нейробластов |
Lhx 1, Lhx 2, Lhx 5 | Передний мозг, кора полушарий | Формирование подкорковых и корковых (архикортекс) отделов полушарий |
Nkx 2,1 Nkx 2,2 | Вентральные отделы полушарий | Пролиферация и миграция нейробластов в стриатуме |
Otx 1, Otx 2 | Передний мозг, средний мозг, передние отделы ствола мозга | Формирование структуры полушарий, включая кору мозга |
Pax 3, Pax 6 | Передний мозг | Миграция нейробластов в дорсальных отделах полушарий |
Развитие зачатка переднего мозга контролирует небольшая группа клеток, расположенная на верхушке нервной трубки и названная передним мозговым организатором (ANR – anterior neural ridge) и клетки на границе второго мозгового пузыря – zona limitans interthalamica (ZLI). Структуры среднего, заднего, продолговатого мозга и верхние сегменты спинного мозга контролируются еще одним организатором – isthmic organizer (ISO).
В перинатальный период заканчивается формирование внутренней структуры мозга. Начинается активная миелинизация головного и спинного мозга. Однако эти процессы не заканчиваются с рождением. Показано, что достаточно долго (месяцы и годы) после рождения происходит созревание и дифференцировка нервных структур и проводящих трактов. Более того, в настоящий период стало ясно, что во взрослый период происходит образование новых популяций нейронов и глиальных клеток за счет сохранения в мозге популяций НСК в структурах головного мозга.
- на каком сроке беременности формируется зрение
- на каком сроке беременности формируется плацента и прикрепляется к матке