на какую точку стопы при ходьбе приходится фаза толчка

На какую точку стопы при ходьбе приходится фаза толчка

Эти три движения происходят из горизонтальной, сагиттальной и фронтальной плоскости.

Так как оси движения трехплоскостных суставов наклонены, пересекая все три оси тела (сагиттальную, фронтальную и горизонтальную), то движение отведения, тыльного сгибания и эверсии происходят одновременно (фото 2, Р).

Супинация и пронация, описанные выше, происходят в открытой кинетической цепи.

Root и др. описывают это движение в открытой кинетической цепи, наблюдая за пяточной костью в НЕнагруженном положении.

Функциональная биомеханика стопы и голеностопного сустава очень важны именно в нагруженном положении или в закрытой кинетической цепи.

Супинация и пронация происходят в определенных точках опоры, чтобы помочь движению, стабилизировать суставы и снизить нагрузку на стопу и нижнюю конечность.

Root и др. идентифицировали 5 трехплоскостных суставов, которые позволяют происходить пронации и супинации.

Трепхплоскостные суставы включают в себя голеностопный, подтаранный, поперечный,
первый луч (клиновидно-плюсневый сустав), пятый луч (пятый предплюсне-плюсневый сустав).

Пронация происходит в фазу опоры шагового цикла для амортизации удара во время ходьбы, сохранения равновесия, при изменениях рельефа местности.

С момента касания пяткой до момента касания большим пальцем на стопу и нижнюю конечность воздействуют 4 основные силы, требующие смягчения.

При касании пятки 80% веса тела приходится на пяточную кость, образуется вертикальная к земле сила. Кость – это специальная соединительная ткань, предназначенная для снижения силы компрессии. Расположение большеберцовой, таранной и пяточной кости в момент касания пятки играет важную роль в безопасном распределении вертикальной компрессии.

Распределение компрессии весовой нагрузки с момента касания пяткой до касания большим пальцем происходит между пяточной и плюсневыми костями. Кости плюсны и предплюсны находятся под взаимным давлением подобно арке каменной кладки.

Средняя часть стопы во время фазы опоры не несет на себе веса. Есть также передняя поперечная сила сдвига большеберцовой и таранной кости. Она смягчается в большей степени икроножной/камбаловидной мышечными группами. Mann описывает медиальный сдвиг в стопе как следствие внутренней ротации нижней конечности.

Подтаранный сустав, состоящий из таранной и пяточной костей, отвечает на внутреннюю ротацию и медиальный сдвиг латеральным смещением или вальгусом пяточной кости.

Таранная кость двигается в медальном направлении (подошвенная поверхность совершает флексию и приведение), чтобы полностью совпадать с медиальной суставной фасеткой пяточной кости. Эта медиальная суставная поверхность сформирована медиальным отростком пяточной кости, называемым опорой таранной кости.

Поэтому когда задняя часть пяточной кости идет латерально, медиальный отросток пяточной кости уходит в латеральном направлении вместе с таранной костью (фото 3). Данная ротация таранной и пяточной костей была описана как преобразователь крутящего момента нижней конечности.

Фото 3. Пронация в закрытой кинетической цепи.

А. Подтаранный сустав и талокруральный сустав (голеностопный сустав). Вид спереди
В. Подтаранный сустав и талокруральный сустав (голеностопный сустав). Вид сзади

1. Пяточно/кубовидная артикуляция
2. Таранно-ладьевидная артикуляция
3. Опора таранной кости
4. Пяточная кость
5. Таранная кость
6. Большеберцовая кость
7. Малоберцовая кость

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчка

Передвижение – последовательность ротаций, начинающихся в поясничном отделе позвоночника, которые перемещают тело в пространстве. Ротации большой и малой берцовых костей в горизонтальной плоскости передаются и уменьшаются в подтаранном суставе. В фазу опоры шагового цикла ротация стопы не происходит.

Большеберцовая кость вращается внутрь во время касания пяткой, таранная кость следует за ней, что приводит к пронации подтаранного сустава или вальгусу (эверсии) пятки (фото 3).

Ротации нижней конечности в горизонтальной плоскости преобразуются в трехплоскостные движения пронации и супинации.

Поперечный сустав предплюсны, состоящий из таранно-ладьевидного и пяточно-кубовидного суставов, становится мобильным при пронации подтаранного сустава.

Кубовидная и ладьевидная кости выстраиваются более параллельно, позволяя переднему отделу стопы превратиться в «мешок с костями». Передний отдел становится эффективным и мобильным адаптером к изменениям поверхности, тем самым облегчая нахождение равновесия. Именно в области плюсны мы можем наблюдать снижение и увеличение медиальной арки.

Подводя итог вышесказанному, можно сказать, что на стопу и нижнюю конечность от момента удара пяткой до касания носком действует множество сил, из которых мы рассмотрели компрессию, ротацию, передний и медиальный сдвиги. Нормальная пронация играет важную роль в смягчении этих сил. Эта пассивная активность в закрытой кинетической цепи возникает вследствие внутренней ротации нижней конечности и силы медиального сдвига. Пронация инициируется в момент касания пятки и контролируется эксцентрическим сокращением супинаторов. С момента касания пяткой до момента касания носком активными являются следующие 3 мышцы: передняя большеберцовая, длинный разгибатель пальцев, длинный разгибатель большого пальца.

Супинация происходит в конце фазы опоры шагового цикла.

Это позволяет наружным мышцам эффективно функционировать и создает надежный рычаг для отталкивания. Этот жесткий рычаг формируется за счет фиксации костей стопы и голеностопа.

Зафиксированная позиция плюсны и предплюсны способствует установлению блоковой системы мышц. Правильная работа некоторых наружных мышц зависит от костных рычагов. Например, длинная малоберцовая мышца во время толчка стабилизирует первый луч. Способность этой мышцы совершать данное движение зависит от кубовидного блока (кубовидная кость в качестве ролика).

Фото 4. Кубовидный блок (cuboid pulley).

А и F представляют векторы действия длинной малоберцовой мышцы.
А. Вектор отведения;
F. Вектор подошвенного сокращения;
P. Сухожилие длинной малоберцовой мышцы;

1. Кубовидная кость;
2. Клиновидный кости;
3. Таранная кость;
4. Малоберцовая кость;
5. Большеберцовая кость.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчка

Супинация стопы является результатом нескольких механизмов. Сначала в подфазу середины опоры (касание носком и толчок) активность наружных мышц инициализирует супинацию.

Исследования электромиографии показали, что в подфазу середины опоры увеличивается активность икроножной/камбаловидной мышц, задней большеберцовой, длинного сгибателя большого пальца и длинного сгибателя пальцев. Mann и Inman при помощи исследований электромиографии продемонстрировали важность глубоких мышц, участвующих в касании носком/отталкивании. Мышца, отводящая мизинец стопы; короткий сгибатель пальцев; короткий сгибатель большого пальца; короткая головка мышцы, отводящей большой палец; межкостные мышцы и короткий разгибатель пальцев важны для стабилизации плюсневого сустава во время последних 50% фазы опоры.

Второй фактор, влияющий на супинацию – это наружная ротация нижней конечности. Контралатеральная конечность, раскачиваясь вперед мимо опорной конечности, создает силу наружной ротации. Она обуславливает латеральную силу сдвига в стопе, приводящую к супинации. Подтаранный сустав инициирует супинацию инверсией пятки. Таранная кость перемещается в латеральную позицию (абдукция и дорсифлексия) через медиальный отросток пяточной кости. Плюсневый сустав в момент супинации подтаранного сустава блокируется. Механизм блокировки срабатывает тогда, когда кубовидная и ладьевидная кости оказываются перпендикулярными друг другу. Кости становятся прочными рычагами для более эффективной работы длинной малоберцовой и задней большеберцовой мышц. Таким образом, синергическое сокращение этих двух мышечных групп стабилизирует средний отдел стопы и первый луч (кубовидного блока). Стабилизация первого луча обеспечивает хорошее выравнивание первого плюснефалангового сустава и надежный рычаг для отталкивания.

Третий фактор, влияющий на супинацию – мобильность первого плюснефалангового сустава. Разгибание этого сустава обуславливает повышенное натяжение подошвенного апоневроза, способствующего супинации подтаранного сустава. Этот механизм описывался ранее как «Эффект лебедки». Для включения этого механизма в норме требуется 60-70º пассивной дорсифлексии плюснефалангового сустава.

Фото 5. Закрытая кинетическая цепь супинации
А. Вид подтаранного и голеностопного суставов спереди;
В. Вид сзади.

1. Пяточный/кубовидный сустав;
2. Таранный/ладьевидный суставы;
3. Опора таранной кости;
4. Пяточная кость;
5. Таранная кость;
6. Большеберцовая кость;
7. Малоберцовая кость.

Источник

Научная электронная библиотека

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчка

Фирилёва Ж. Е., Загрядская О. В.,

8.2.1. Биомеханика ходьбы

Ходьба по ровной поверхности требует относительно малой работы всех групп мышц у здорового человека и происходит практически автоматически, без особого участия сознания. Группы мышц, выполняющие основную работу, включают:

1) подошвенные сгибатели стопы в момент отталкивания,

2) сгибатели бедра в момент отрыва от поверхности,

3) разгибатели бедра в ранней фазе опоры, когда бедро разгибается, чтобы переместить массу тела над опорной стопой, функционируя по принципу маятника (Olney, 2005).

К биомеханическим критериям ходьбы можно отнести:

– поддержание вертикального положения и равновесия в момент перемещения тела вперёд над ступнями;

– контроль за постановкой стоп с пятки;

– отработка ритма движений во взаимосвязи всех звеньев тела;

– координационная взаимосвязь звеньев тела при передвижении;

– гибкость формирования двигательного навыка ходьбы при применении в различных условиях и соответствие поставленным задачам (условия местности, характер грунта, препятствия и др.).

Анализ шагательных движений характеризуется попеременной активностью ног, чередованием отталкивания и переноса каждой ноги. Эти движения отличаются строгой слаженностью и соответствием строению тела. Как указывает Д.Д. Донской (1975), в шагательных движениях каждая нога поочерёдно бывает опорной и переносной. В опорном периоде имеются фазы амортизации и отталкивания, в переносной – период подъёма и торможения ноги.

Основа шагательных движений – фаза отталкивания – неразрывно связана с подготовкой к ней – с фазой амортизации. Вместе они составляют период опоры, когда нога имеет контакт с опорой и находится под действием веса и силы инерции тела (рис. 11).

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчка

Рис. 11. Биомеханика ходьбы

Фаза амортизации начинается с постановки ноги с пятки на опору. Амортизация заключается в торможении движения тела по направлению к опоре. Происходит уступающее движение, мышцы растягиваются, совершая отрицательную работу и уменьшая скорость движения тела. К концу амортизации вертикальная составляющая скорости тела падает до нуля, опускание вниз прекращается. Горизонтальная же составляющая скорости за это время уменьшается, но не до нуля, тело не останавливается, а продолжает движение вперёд. Фаза амортизации заканчивается в момент прекращения движения тела вниз.

Окончанием фазы амортизации условно считают наибольшее сгибание опорной ноги в коленном суставе. Амортизация выполняется не только движением в коленном суставе, но и имеет место растягивание мышц в голеностопном суставе (перекат с пятки на носок), оно заканчивается несколько позже амортизации в коленном суставе.

Фаза отталкивания начинается с разгибания опорной ноги в коленном суставе. К этому движению отталкивания несколько позже присоединяется подошвенное сгибание стопы в голеностопном суставе. Условность начала фазы отталкивания определяется движением разгибания бедра опорной ноги в тазобедренном суставе, которое может начинаться в момент опоры. Окончанием фазы отталкивания считают момент отрыва стопы от опоры.

После опорного периода ноги наступает период её переноса. Фаза подъёма ноги начинается с момента отрыва от опоры и заканчивается началом её движения вперёд (относительно таза). В это время происходит опора тела только на одной опорной ноге и длится она до опускания ноги на опору.

Фаза опускания ноги на опору начинается с момента крайнего положения бедра вперёд и кверху и заканчивается в момент постановки стопы на опору. В циклических перемещениях движениям ног соответствуют маховые движения рук, согласованные перекрёстной координацией движений всех четырёх конечностей. Так, соответственно выносу левой ноги вперёд определяется движение правой руки вперёд-книзу. Руки двигаются свободно и ритмично, создавая определённое балансирование и хорошие условия для сердечно-сосудистой и дыхательной систем.

В зависимости от способа шагательного перемещения и темпа шагов, осуществляются движения туловища и таза относительно всех трёх осей: наклоны вперёд и назад, в боковых направлениях, поворот вокруг вертикальной оси. Всё это происходит в большей или меньшей степени, в связи с движениями туловища и таза, которые динамически связаны с движением ног и рук.

Для увеличения скорости шагательных движений нужно увеличить их длину и частоту. Изменяя величину и длительность усилий, перестраивают ритм шагательных движений: изменяется длина, частота шагов и скорость передвижения. Изменение двигательной задачи и условий её выполнения требует качественной перестройки всей системы движений (Д.Д. Донской, 1975).

Указанные особенности биодинамической структуры движений необходимо учитывать в методике обучения шаговым движениям лиц, перенёсших инсульт и имеющих отклонения в опорно-двигательном аппарате и осваивающих ходьбу.

Источник

Кинематика и динамика стопы при ходьбе

Автор: Врач ортопед, канд.мед. наук В.И. Угнивенко

Динамика стопы – это взаимодействие сил, действующих на стопу, и тех нагрузок и напряжений, которые возникают при воздействии этих сил. Стопа – это составная часть биомеханической системы опорно-двигательного аппарата и ее динамика не может быть рассмотрена вне связи с этой системой. Динамика стопы это производная от движений опорно-двигательной системы (кинематики). Наиболее типовые движения человека, связанные с нагрузкой стопы – ходьба.

Стопа преодолевает гигантские по величине и по продолжительности повторяющиеся нагрузки. Скорость, на которой стопа “приземляется” на опору, составляет при быстрой ходьбе 5 метров в секунду (18 км в час), а при беге до 20 м. в сек (70 км в час), что определяет силу столкновения с опорой равную 120-250% от веса тела. В течение дня обычный человек совершает от 2 до 6 тысяч шагов (за год от 860 000 до 2 085 600 шагов). Даже современные протезы стопы не служат при такой эксплуатации более 3 лет. Долговечность стопы человека определяется совершенством механической конструкции и уникальностью материала, из которого “сделана” стопа.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчкаРисунок 12. Общие параметры, характеризующие ходьбу.

Наиболее общие параметры, характеризующие ходьбу, представлены на рисунке 12.

Такими параметрами являются линия перемещения центра масс тела, длина шага, длина двойного шага, угол разворота стопы, база опоры, а также скорость перемещения и ритмичность ходьбы.

База опоры – это расстояние между двумя параллельными линиями, проведенными через центры опоры пяток параллельно линии перемещения. Она определяет устойчивость тела человека.

Разворот стопы – это угол, образованный линией перемещения и линией, проходящей через середину стопы: через центр опоры пятки и точку между 1 и 2 пальцем. Чем больше разворот стопы, тем больше база опоры, но меньше эффективность ходьбы (и наоборот).

Короткий шаг – это расстояние между точкой опоры пятки одной ноги и центром опоры пятки противоположной ноги.

Ритмичность – число шагов в минуту. Для взрослого – 113 шагов в минуту. Она определяет отношение длительности переносной фазы одной ноги к длительности переносной фазы другой ноги.

Скорость ходьбы – число больших шагов в единицу времени и измеряется в единицах: шаг в минуту или километр в час.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчкаРисунок 13. Методика подографии.

Методики исследования ходьбы.

Кинематику ходьбы изучают с использованием контактных и бесконтактных датчиков измерения углов в суставах (гониометрия), а так же с применением гироскопов – приборов, позволяющих определить угол наклона сегмента тела относительно линии гравитации. Важным методом в исследовании кинематики ходьбы является методика циклографии – метод регистрации координат светящихся точек, расположенных на сегментах тела.

Динамические характеристики ходьбы изучают с применением динамографической (силовой) платформы. При опоре силовую платформу регистрируют вертикальную реакцию опоры, а также горизонтальные ее составляющие. Для регистрации давления отдельных участков стопы применяют датчики давления или тензодатчики, вмонтированные в подошву обуви. Физиологические параметры ходьбы регистрируют при помощи методики электромиографии – методики регистрации биопотенциалов мышц. Электромиография, сопоставленная с данными методик оценки временной характеристики, кинематики и динамики ходьбы, является основой биомеханического и инервационного анализа ходьбы.

Подография позволяет регистрировать моменты контакта различных отделов стопы с опорой для оценки временной структуры ходьбы. На этом основании определяют временные фазы шага. Рассмотрим пример исследования ходьбы, основанного на применении самой простой, двухконтактной электроподографии. Этот метод заключается в использовании контактов в подошве специальной обуви, которые замыкаются при опоре на биомеханическую дорожку. На рисунке изображена ходьба в специальной обуви с двумя контактами в области пятки и переднего отдела стопы. Период замыкания контакта регистрируется и анализируется прибором: замыкание заднего контакта – опора на пятку, замыкание заднего и переднего – опора на всю стопу, замыкание переднего контакта – опора на передний отдел стопы. На этом основании строят график длительности каждого контакта для каждой ноги.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчкаРисунок 14. Временная структура ходьбы.

Существуют различные схемы временной структуры шага, предложенные различными биомеханическими школами. График самой простой двухконтактной подограммы изображается в виде двух схем: подограмма правой ноги и подограмма левой ноги. Красным цветом выделена подограмма правой ноги. То есть той ноги, которая в данном случае начинает и заканчивает цикл ходьбы – двойной шаг. Тонкой линией обозначают отсутствие контакта с опорой, затем мы видим время контакта на задний отдел стопы, на всю стопу и на передний отдел. Локомоторный цикл состоит из двух двуопорных и двух переносных фаз. По подограмме определяют интервал опоры на пятку, на всю стопу и на ее передний отдел. Временные характеристики шага выражают в секундах и в процентах к продолжительности двойного шага, длительность которого принимают за 100%. Все остальные параметры ходьбы (кинематические, динамические и электрофизиологические) привязывают к подограмме – основному методу оценки временной характеристики ходьбы.

При ходьбе человек последовательно опирается то на одну, то на другую ногу. Эта нога называется опорной. Контралатеральная (противоположная) нога в этот момент выносится вперед (Это – переносная нога). Период переноса ноги называется «фаза переноса. Полный цикл ходьбы — период двойного шага — слагается для каждой ноги из фазы опоры и фазы переноса конечности. В опорный период активное мышечное усилие конечностей создаёт динамические толчки, сообщающие центру тяжести тела ускорение, необходимое для поступательного движения. При ходьбе в среднем темпе фаза опоры длится примерно 60% от цикла двойного шага, фаза опоры примерно 40%. Рассмотрим наиболее общие перемещения тела в сагиттальной плоскости в процессе двойного шага. Началом двойного шага принято считать момент контакта пятки с опорой. В норме приземление пятки осуществляется на ее наружный отдел. С этого момента эта (правая) нога считается опорной. Иначе эту фазу ходьбы называют передний толчок – результат взаимодействия силы тяжести движущегося человека с опорой. На плоскости опоры при этом возникает опорная реакция, вертикальная составляющая корой превышает массу тела человека.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчкаРисунок 15. Сила реакции опоры.

Реальные силы при ходьбе, которые можно измерить – это силы реакции опоры. Сопоставление силы реакции опоры и кинематики шага позволяют оценить величину вращающего момента сустава. Сила реакции опоры это сила, действующая на тело со стороны опоры. Эта сила равна и противоположна той силе, которую оказывает тело на опору. Если при стоянии сила реакции опоры равна весу тела, то при ходьбе к этой силе прибавляются сила инерции и сила, создаваемая мышцами при отталкивании от опоры.

Для исследования силы реакции опоры обычно применяют динамографическую (силовую) платформу, которая вмонтирована в биомеханическую дорожку. При опоре в процессе ходьбы на эту платформу регистрируют возникающие силы – силы реакции опоры. Силовая платформа позволяет регистрировать результирующий вектор силы реакции опоры.

Динамическая характеристика ходьбы оценивается путем исследования опорных реакций, которые отражают взаимодействие сил, принимающих участие в построении локомоторного акта: мышечных, гравитационных и инерционных. Вектор опорной реакции в проекции на основные плоскости разлагается на три составляющие: вертикальную, продольную и поперечную. Эти составляющие позволяют судить об усилиях, связанных с вертикальным, продольным и поперечным перемещением общего центра масс.

Сила реакции опоры включает в себя вертикальную составляющую, действующую в направлении вверх-вниз, продольную составляющую, направленную вперед-назад по оси Y, и поперечную составляющую, направленную медиально-латерально по оси X. Это производная от силы мышц, силы гравитации и силы инерции тела.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчкаРисунок 16. Вертикальная составляющая опорной реакции.

Вертикальная составляющая вектора опорной реакции (рис 16). График вертикальной составляющей опорной реакции при ходьбе в норме имеет вид плавной симметричной двугорбой кривой. Первый максимум кривой соответствует интервалу времени,когда в результате переноса тяжести тела на опорную ногу происходит передний толчок, второй максимум (задний толчок) отражает активное отталкивание ноги от опорной поверхности и вызывает продвижение тела вверх, вперед и в сторону опорной конечности. Оба максимума расположены выше уровня веса тела и составляют соответственно при медленном темпе примерно 100% от веса тела, при произвольном темпе 120%, при быстром – 150% и 140%.

Минимум опорной реакции расположен симметрично между ними ниже линии веса тела. Возникновение минимума обусловлено задним толчком другой ноги и последующим ее переносом; при этом появляется сила, направленная вверх, которая вычитается из веса тела. Минимум опорной реакции при разных темпах составляет от веса тела соответственно: при медленном темпе – примерно 100%, при произвольном темпе 70%, при быстром – 40%.

Таким образом, общая тенденция при увеличении темпа ходьбы состоит в росте значений переднего и заднего толчков и снижении минимума вертикальной составляющей опорной реакции.

Реакция опоры – эти силы приложенные к стопе. Вступая в контакт с поверхностью опоры, стопа испытывает давление со стороны опоры, равное и противоположное тому, которое стопа оказывает на опору. Это и есть реакция опоры стопы. Эти силы неравномерно распределяются по контактной поверхности. Как и все сила такого рода их можно изобразить в виде результирующего вектора, который имеет величину и точку приложения.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчкаРисунок 17. Точка приложения вектора реакции опоры.

Точка приложения вектора реакции опоры на стопу иначе называется центром давления. Это важно, для того чтобы знать, где находится точка приложения сил, действующих на тело со стороны опоры. При исследовании на силовой платформе эта точка называется точкой приложения силы реакции опоры. Траектория силы реакции опоры в процессе ходьбы изображается в виде графика: «зависимость величины силы реакции опоры от времени опорного периода». График представляет собой перемещение вектора реакции опоры под стопой. Нормальный паттерн, траектория перемещения реакции опоры при нормальной ходьбе представляет собой перемещение от наружного отдела пяти вдоль наружного края стопы в медиальном направлении к точке между 1 и 2 пальцем стопы.

Траектория перемещения вариабельна и зависит от темпа и типа ходьбы, от рельефа поверхности опоры, от типа обуви, а именно от высоты каблука и от жесткости подошвы. Паттерн реакции опоры во многом определяется функциональным состоянием мышц нижней конечности и инервационной структурой ходьбы.

Важную информацию о распределении давления на различные участки стопы получают при помощи тензометрических измерений. Тензодатчики – датчики давления располагают в специальной стельке для обуви. Этот метод исследования позволяет изучить не результирующую силу реакции опоры, как при динамометрическом методе, а распределение давления под разными отделами стопы.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчка

Особенности биомеханики стопы при ходьбе. При ходьбе стопа выполняет четыре основные функции: адаптация к неровностям поверхности, поглощение энергии удара при приземлении, функцию жесткого рычага для передачи вращательного момента вышележащим сегментам, перераспределение и смягчение ротационных усилий вышележащих сегментов. Рисунок 18. Фазы опорной реакции.Биомеханика стопы и функции стопы в различные фазы шага – различны. Если в фазу амортизации основная задача стопы – смягчение удара при контакте с поверхностью, то в период опоры на всю стопу – задача стопы – перераспределение энергии для эффективного выполнения следующей фазы – отталкивания от опоры. Эта фаза ставит перед стопой задачу передачи лежащим выше сегментам силы реакции опоры. Смягчение инерционной нагрузки при ходьбе и беге осуществляется сложным комплексом суставно-связочного аппарата, соединяющего 26 основных костей стопы, в котором выделяют 3 продольных и поперечный свод. Рассмотрим строение только одного из них – среднего продольного свода. Пяточная, таранная и кости плюсны и предплюсны образуют своеобразную арку – рессору, способную уплощаться и расправляться. Нагрузка – вес тела – распределяется равномерно на передний и задний отдел стопы. Передний и задний отделы стопы соединены в единую кинематическую цепь мощным эластичным сухожилием – подошвенным апоневрозом,который подобно пружине возвращает распластанный под нагрузкой свод стопы (см статью “стопа в статике”).

Рассмотрим точки приложения реакции опоры к стопе в процессе фазы опоры. Стопа приземляется на наружный отдел пятки. Затем на протяжении фазы приземления центр силы реакции опоры смещается к центру стопы в фазе опоры на всю стопу и на ее передний внутренний отдел в фазу отталкивания. Биомеханический смысл такой траектории перемещения точки приложения силы реакции опоры заключается в том, что при этом в различные фазы опоры создаются вращающие моменты, которые вызывают следующие движения в суставах стопы: супинация стопы – варус пятки и переднего отделов (рисунок 1); пронация стопы – вальгус переднего отдела и пятки, распластывание стопы (рисунок 2); вновь пронация стопы, при которой суставы стопы замыкаются и стопа приобретает жесткость, необходимую для передачи энергии верхним сегментам (рисунок 3). При опоре на всю стопу суставы размыкаются, стопа легко адаптируется к поверхности опоры. В этот период сухожилие стопы запасает энергию в виде энергии упругих связей, которую затем возвращает в период отталкивания.

Пронация стопы – результат внутренней ротации бедра в первую половину опоры ноги. При опоре на пятку колено подгибается, бедро ротируется внутрь, это ускоряет перекат через пятку и перенос веса тела на всю стопу. Затем стопа неизбежно распластывается, и энергия движения переходит в энергию упругих связей стопы.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчкаРисунок 19. Супинация и пронация стопы.

Таким образом, во время ходьбы мы можем наблюдать два паттерна движений в суставах стопы: супинация и пронация (рис 19). При супинации стопа вращается внутрь за счетподтаранного сустава, пятка находится в положении варуса, свод высокий. Суставы стопы находятся в положении замыкания, что обеспечивает необходимую жесткость стопы при приземлении и отталкивании. При пронации стопы мы видим обратный паттерн: продольный свод опускается, пятка в подтаранном суставе принимает положение вальгуса, суставы размыкаются, стопа легко адаптируется к опоре. Отметим, что продольный свод стопы активно удерживает передняя большеберцовая мышца, дополнительно смягчает инерцию приземления и возвращает жесткость стопы при отталкивании. В момент пронации стопа создает вращательный момент голени – момент наружной ротации.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчкаРисунок 20. Движение в подтаранном суставе.

Движение – пронация стопы – это вращение в подтаранном суставе (рис 20). Ось этого сустава расположена косо, таким образом, что пронация стопы приводит к ротации голени. Это важно для рассмотрения вопроса – особенности биомеханики коленного сустава при ходьбе.Ось подтаранного сустава расположена косо в направлении спереди назад, изнутри к наружи. Она явно не совпадает с направлением оси голеностопного и коленного суставов. Однако именно такое ее положение (явно несоосное с другими суставами) определяет эффективность ходьбы.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчкаРисунок 22. Модель обратного маятника.

Однако этого недостаточно для полноценного поглощения переднего толчка. Рассмотрим еще один важный биомеханический механизм – вращение относительно голеностопного сустава. Для этого представим себе идущего человека в виде обратного маятника с центром вращения в голеностопном суставе. Мы видим, как при опоре на пятку возникает вращающим момент, голень под влиянием силы инерции наклоняется вперед, возникает целый каскад вращения в вышележащих суставах ноги, и общий центр масс тела совершает поступательное движение вперед. Схема, представленная на рисунке 22, не совсем точна, на ней (для упрощения) не изображен очень важный момент, очень важный механизм – подгибание в коленном суставе в момент опоры на пятку. Этот и многие другие механизмы трансформации движений при ходьбе, мы возможно рассмотрим в других статьях, посвященных биомеханике ходьбы.

Для того, чтобы получить общеепредставление о работе мышц при ходьбе, которые являются не только источником энергии поступательного движения, но и выполняют важную функцию поглощения и перераспределения энергии в первую фазу опоры посмотрите на рисунок 23. Мышцы нижней конечности работают то в уступающем, то в преодолевающем режиме, то есть то притормаживают, то ускоряют движения в суставах, обеспечивая плавное поступательное движение общего центра массы.

Стопа является первым самым нагружаемым звеном этой сложной трансмиссии. Она осуществляет контакт с опорой, она перераспределяет силу реакции опоры на вышележащие сегменты опорно-двигательного аппарата и выполняет важную рессорную функцию, она обеспечивает устойчивость ноги и сцепление с опорной поверхностью.

Способность стопы противостоять нагрузкам обусловлена не только биомеханически совершенством, но и свойством составляющих ее тканей. Коротки и прочные кости стопы имеют форму точно соответствующую направлению и величине нагрузки.

Известный закон биологии гласит «Функция определяет форму», из этого вытекают прошедшие проверку временем и практикой постулаты: “механические напряжения полностью определяют все детали структуры” и “кость разрастается преимущественно по направлению тяги и перпендикулярно плоскости давления”. Структура нагрузки повседневных движений влияет и на рост детского скелета (например, быстрее растет более нагружаемая толчковая, обычно правая, нога), и на структуру скелета у взрослых. Внешняя форма костей может изменяться под влиянием различных видов спорта или профессиональных движений. Они становятся массивнее и толще за счет увеличения костной массы в наиболее нагружаемых участках. Таким образом кости стопы адаптируют свою прочность в соответствии с весом человека и с повседневной двигательной активностью.

на какую точку стопы при ходьбе приходится фаза толчка. Смотреть фото на какую точку стопы при ходьбе приходится фаза толчка. Смотреть картинку на какую точку стопы при ходьбе приходится фаза толчка. Картинка про на какую точку стопы при ходьбе приходится фаза толчка. Фото на какую точку стопы при ходьбе приходится фаза толчкаРисунок 24. Подошвенный апоневроз и пяточная шпора.

Аналогичный закон действует и в отношении соединительнотканных структур стопы (связок, сухожилий и фасций). Волокна самой мощной фасции стопы – подошвенного апоневроза ориентированы вдоль самого нагружаемого продольного свода стопы (рис.24).

Если повторяющиеся нагрузки по своей величине или продолжительности превышают возможности тканей стопы, то в них развиваются патологические реакции перегрузки и патологические процессы, такие как воспаление сухожилия, усталостные переломы, разрывы сухожилий… Например, отложение солей кальция в области прикрепления подошвенного апоневроза к бугру пяточной кости, которое именуется пяточной шпорой.

Плоскостопие, гиподинамия, избыточные спортивные нагрузки – обычная причина этих заболеваний. Но об этом в другой статье.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *