на какую высоту может подняться воздушный шар с человеком
На какую высоту может подняться воздушный шар с человеком
15 октября 1783 года воздушный шар с французским учёным Пилатром де Розье на борту оторвался от земли.
Отрывок из книги: Морозов Илья. К заоблачным глубинам. История высотных полётов. — Долгопрудный: ИД «Интеллект», 2015.
15 октября 1783 года воздушный шар с французским учёным Пилатром де Розье (Pil?tre de Rozier) на борту оторвался от земли и поднялся на несколько десятков метров удерживаемый верёвкой. Сбылась мечта человечества о подъёме в небо. В Европе началось увлечение воздухоплаванием. Оболочки многих первых аэростатов — монгольфьеров — наполнялись горячим воздухом, который довольно быстро остывал. Ограничен был и запас взятого на борт топлива, которым служила солома. Эти обстоятельства значительно сокращали продолжительность и высоту полёта.
1 декабря 1783 года состоялся первый полёт на шарльере — более совершенном типе аэростата, оболочка которого наполнялась уже водородом (позднее для этой цели стал также применяться светильный газ — смесь водорода, метана и других горючих газов). Шарльеры были лишены присущих монгольфьерам недостатков, ограничивающих продолжительность и высоту полёта, являлись менее пожароопасными и обладали большей в 3,5 раза подъёмной силой при равном объёме. В дальнейшем практически все полёты совершались именно на них.
Первые подъёмы показали ошибочность бытовавшего в то время представления о том, что живые существа неизбежно задохнутся под облаками даже на небольшой высоте. Впрочем, подобные опасения всё же были не напрасны. Уже во время второго полёта на шарльере, в ходе которого профессор Жак Александр Сезар Шарль (Jacques Alexandre César Charles) поднялся приблизительно на 3 км, воздухоплаватель испытал состояние кислородного голодания и боль в ушах от быстрого изменения давления. Последующий опыт подтвердил появление болезненных ощущений на высоте. Например, с ухудшением самочувствия столкнулись в 1803 году знаменитый тогда воздухоплаватель Этьен-Гаспар Робер (Étienne Gaspard Robert) и его спутник. В 1804 году трое итальянских аэронавтов при восхождении на 6 км почувствовали головокружение и тошноту. Иногда неприятности возникали уже начиная с высоты 2—2,5 км.
Помимо ухудшения самочувствия большие трудности вызывал холод. На высоте 6 км температура воздуха составляет приблизительно минус 24 о C, опускаясь до минус 43 о C к 9 км. Это не только доставляло неудобства (например, онемение пальцев затрудняло проведение исследований и управление аэростатом), но и являло собой серьёзную опасность, представляя угрозу здоровью и даже жизни. Тёплая одежда в полной мере защитить воздухоплавателей не могла.
Всё же неудобства и опасность не останавливали отважных первопроходцев, продолжавших совершать высотные полёты. Главной целью их восхождений были метеорологические и другие научные наблюдения. Возможность подняться на высоту, не доступную какими-либо иными путями, и наблюдать различные атмосферные явления в процессе их зарождения и развития представляла огромный интерес для изучения атмосферы. О незаменимости аэростатов для метеорологии свидетельствовала яркая речь, произнесённая на учредительном собрании Французского общества воздухоплавания: «Явления, происходящие в атмосфере, нам почти неизвестны. Вынужденные ползать по поверхности земли, наблюдатели не имели до сих пор возможности изучать что-либо другое, кроме нижнего слоя атмосферы. Воздухоплаватели, наоборот, могут исследовать воздушную сферу по всем направлениям. »1
Основными измеряемыми параметрами были температура и давление окружающего воздуха на различных высотах. Термометр и барометр присутствовали на борту в каждом исследовательском полёте. Изучалось и множество других самых разнообразных вопросов; например, в 1786 году была сделана первая попытка измерений электрического напряжения в атмосфере при подъёме на аэростате.
Первый в России и один из первых в мире серьёзно организованных полётов на аэростате с научными целями состоялся 30 июня 1804 года. Этот полёт «в высшей части атмосферы» совершили приглашённый воздухоплаватель Робер и академик Яков Дмитриевич Захаров. «Воздушные путешествия производимы были до сих пор единственно из корыстолюбия и для удовольствия народного Санктпетербургская императорская Академия наук, рассуждая о пользе, какую сие воздушное плавание наукам принести может, вознамерилась первая учинить оное для учёных исследований. Главный предмет сего путешествия состоял в том, чтобы узнать с большею точностью о физическом состоянии атмосферы и о составляющих её частях в разных, но определённых возвышениях оной», — говорилось в рапорте академика Захарова в Академию наук о результатах путешествия2. Для этого полёта «в самой большей от земли отдалённости» были поставлены разнообразные исследовательские задачи, изучать предстояло «скорейшее или медлительнейшее выпарение жидкостей, уменьшение или увеличение магнитной силы, углубление магнитной стрелки, увеличение или уменьшение согревательной силы солнечных лучей. яркость цветов, призмою произведённых, несуществование или существование электрического вещества, некоторые замечания на влияние и перемены, какие разжиженный воздух над человеком производит, летание птиц, наполнение способом Торричелли свободных от воздуха склянок при каждом падении на дюйм барометра и некоторые другие физические и химические опыты». Для проведения исследований на борт были взяты «1) двенадцать склянок с кранами в ящике с крышкою, 2) барометр с термометром, 3) термометр, 4) два электрометра с сургучом и серой, 5) компас и магнитная стрелка, 6) секундные часы, 7) колокольчик, 8) голосовая труба, 9) хрустальная призма, 10) известь негашёная и некоторые другие вещи для физических и химических опытов». О результатах полёта, в ходе которого учёный поднялся более чем на 2 км, Я. Д. Захаров сделал подробное донесение в Академию наук.
В том же 1804 году Парижской академией наук были организованы два восхождения, проходившие при участи известных физиков Жозефа Луи Гей-Люссака (Joseph Louis Gay-Lussac) и Жана-Батиста Био (Jean-Baptiste Biot). Но наиболее активно научные полёты с подъёмом на большую высоту начали проводить только в третьей четверти XIX века в Англии и во Франции. По инициативе метеоролога Джеймса Глейшера (James Glaisher) в 1850 году в Англии возникло метеорологическое общество, а в 1866 году — и научное воздухоплавательное общество. На основании данных, полученных Глейшером во время многочисленных подъёмов, был выведен общий закон изменения температуры воздуха с высотой; установлено влияние, оказываемое на распределение температуры облачностью, влажностью, временем года и т. д. Результатами его наблюдений пользовались до конца XIX века во многих научных работах. С 1892 года исследовательские полёты, тщательно организованные в научном отношении, стало проводить Берлинское воздухоплавательное общество. В России после Я. Д. Захарова в 1804 году и Михаила Александровича Рыкачева в 1873 году научных наблюдений на аэростатах не проводилось до конца 1880-х годов, когда появилось военное воздухоплавание и был образован воздухоплавательный отдел при Императорском Русском Техническом Обществе.
Первое время исследователи пользовались обыкновенными измерительными приборами, но постепенно становилась очевидной необходимость их доработки. Было установлено отрицательное влияние застоя воздуха около термометра, влияние на измерительные приборы солнечных лучей и т. д. С конца 1880-х годов вопросу разработки специальных приборов стало уделяться серьёзное внимание.
Для измерения давления воздуха (по которому, в частности, определялась высота) применялись ртутные и анероидные барометры и самопишущие барографы. На точность показаний ртутных барометров влияло вертикальное ускорение аэростата; погрешность к показаниям анероидных приборов давали частые перемены давления воздуха. Разница в показаниях ртутного и анероидного барометров могла составлять более 2—3 мм (что соответствует разнице в высоте 30—50 м и более)3. Подобные особенности осложняли работу аэронавтов по проведению измерений и затрудняли обработку их результатов.
Помимо уникальных условий для исследований, немаловажным (а, возможно, в некоторых случаях и главным) обстоятельством, способствовавшим стремлению подняться как можно выше, была конкуренция между воздухоплавателями. Так, 5 сентября 1862 года англичане Глейшер и Генри Трейси Коксуэлл (Henry Tracey Coxwell) совершили едва не стоивший им жизни высотный полёт, во время которого несколько раз теряли сознание4. Глейшер предположил, что им удалось подняться на 11 км. Некоторыми современниками сама такая возможность справедливо ставилась под сомнение, однако именно намерение побить рекорд англичан было в числе побудительных мотивов к высотным полётам французских воздухоплавателей Жозефа Кроче-Спинелли (Joseph Croce-Spinelli), Теодора Сивеля (Théodore Sivel) и Гастона Тиссандье (Gaston Tissandier).
В 1890-х годах для высотных исследований атмосферы начали применяться небольшие беспилотные шары-зонды. Они оснащались лёгкими самопишущими баротермографами, позволявшими измерять давление и температуру. Наблюдение шаров-зондов с земли давало возможность проводить измерения направления и скорости ветра, получать информацию о циркуляции атмосферы. Шары-зонды позволяли проводить измерения в стратосфере на недоступной человеку высоте, некоторым из них уже в конце XIX века удалось подняться выше 20 км.
Сам термин «стратосфера» ввёл французский метеоролог Леон Тейсерен де Бор (Léon Teisserenc de Bor), заявивший в 1902 году об открытии «изотермического слоя», находящегося на высоте более 10—11 км. Это заключение было сделано на основании многочисленных наблюдений с помощью шаров-зондов. Данные о том, что на этой высоте прекращается снижение температуры, получали и другие исследователи, но многие отказывались верить в их достоверность. Немецкий учёный Хуго Гергезель (Hugo Hergesell) в 1896 году даже начал развивать теорию, позволявшую исправить полученное экспериментально значение температуры на высоте 14 км на минус 68 о C вместо минус 53 о C5.
Возвращаясь к полётам человека, высотными в XVIII—XIX веках могли называться и подъёмы, не превышавшие 2 км, ввиду их редкости. Однако применительно к воздухоплаванию того времени высотными всё же уместнее считать восхождения на 3—4 км и более. Они имели высотную специфику, связанную с разреженным воздухом и низкой температурой, и, в отличие от других, требовали защиты экипажа от неблагоприятного воздействия среды. Вопросу жизнеобеспечения при высотных полётах посвящён следующий параграф.
Высотные полёты и проблема жизнеобеспечения
Воздухоплаватели не были первыми, кто столкнулся с неблагоприятными условиями большой высоты. Ещё задолго до полётов на аэростатах с симптомами гипоксии, вызванными влиянием пониженного парциального давления кислорода, люди встречались при восхождении на горы. Иезуитский священник Хосе де Акоста (José de Acosta) ещё в XVI веке описал симптомы, которые он испытал во время пребывания в Андах, и ввёл термин «горная болезнь». Позволив совершать подъёмы на недоступную ранее высоту, появление воздухоплавания обострило вопрос о необходимости защиты человека. Влияние высоты на организм стало целенаправленно изучаться и нередко ставилось в задачу исследовательских полётов.
Многими учёными выдвигались разные гипотезы о причинах высотной болезни. Первым, кто стал серьёзно изучать проблему ухудшения самочувствия при подъёме и объяснил, какое влияние понижение барометрического давления оказывает на человека, был французский физиолог Поль Бер (Paul Bert), занимавшийся также вопросами водолазной медицины. Ему удалось раскрыть основные физиологические механизмы этого процесса и определить пути защиты от неблагоприятного воздействия. Результаты исследований самого Бера, его предшественников и современников были обобщены в книге «Барометрическое давление», опубликованной в 1878 году6.
При постоянном процентном содержании кислорода (около 21%) с подъёмом на высоту уменьшается его парциальное давление, и для того, чтобы обеспечить человеку нормальное парциальное давление (150 мм рт. ст.), необходимо увеличивать процентное содержание кислорода во вдыхаемом воздухе. 22 марта 1874 года, по совету Бера, воздухоплаватели Сивель и Кроче-Спинелли в полёте на аэростате «Полярная звезда» впервые применили кислород для дыхания. Небольшой его запас находился в мягких баллонах.
15 апреля 1875 года Кроче-Спинелли, Сивель и Тиссандье на аэростате «Зенит» поднялись на 8600 м. Перед этим они проходили подготовку под руководством Бера, в том числе тренировались в барокамере. Воздухоплаватели взяли с собой кислородное оборудование — над корзиной аэростата крепились три ёмкости со смесью воздуха (30%) и кислорода (70%). Дышать нужно было через каучуковые трубки с мундштуками, проходившие через флаконы с ароматической жидкостью. На борту имелись два анероидных барометра для измерения высоты в диапазонах 0—4 и 4—9 км, спиртовой термометр для измерения температуры до минус 30 о C, другой термометр, специальный барометр для измерения максимальной высоты, спектроскоп, компасы, карты, бинокль.
Всё же, несмотря на тщательные приготовления, на высоте события начали развиваться совсем не так, как было запланировано. Г. Тиссандье рассказывал о полёте: «…меня охватила такая слабость, что я даже не мог повернуть головы, чтобы посмотреть на своих товарищей. Хотел схватить трубку с кислородом, но уже не мог поднять руки. Однако голова моя продолжала работать вполне ясно. Я не переставал наблюдать за барометром; по-прежнему не сводил глаз со стрелки, которая вскоре подошла к цифре давления в 290, затем в 280 и стала переходить за неё.
Я хотел крикнуть: “Мы на высоте 8000 метров!”. Но язык у меня был точно парализован. Вдруг глаза мои закрылись, и я упал без чувств. Это было приблизительно в 1 ч. 30 м.
В 2 ч. 8 м. я на минуту пришёл в себя. Шар быстро спускался. У меня достало сил перерезать верёвку одного мешка с балластом, чтобы ослабить скорость спуска, и записать в книжечке следующие строки; привожу их дословно:
“Мы спускаемся; температура –8 о ; я бросаю балласт; давление – 315. Мы спускаемся. Сивель и Кроче всё ещё без чувств на дне корзины. Спускаемся очень быстро”.
Едва успел я написать эти строки, как меня охватила дрожь, и я снова упал в изнеможении. Ветер дул сильно снизу вверх, то есть показывал, что мы очень быстро спускаемся. Через несколько минут я почувствовал, что меня трясут за руку, и узнал Кроче; он пришёл в себя. “Бросайте балласт, — сказал он мне, — мы спускаемся”. Но я мог только с трудом открыть глаза и даже не заметил, очнулся ли Сивель.
Помню, что Кроче отцепил аспиратор и бросил его за борт, затем также выбросил балласт, одеяла и ещё что-то. Но всё это помнится мне крайне смутно, и на этом обрываются дальнейшие воспоминания, потому что тут я опять впал в забытьё, и даже на этот раз более сильное, чем перед тем: мне казалось, что я засыпаю вечным сном»7.
Несмотря на взятый с собой кислород, Сивель и Кроче-Спинелли погибли. Вероятно, трагедии способствовало то обстоятельство, что при развитии острого кислородного голодания организм человека перестаёт подавать сигнал об опасности. Вдобавок и без того небольшой запас кислорода должен был расходоваться экономно. Причиной острой гипоксии могло также стать засасывание воздуха через нос.
Трагическое известие о гибели воздухоплавателей распространилось далеко за пределы Франции и побудило многих обратить пристальное внимание на вопросы, связанные с высотными полётами. Так, русский физиолог Иван Михайлович Сеченов в 1879 году занялся исследованиями, позволившими установить непосредственную причину гибели аэронавтов8. Выведенная им формула для определения парциального давления кислорода в альвеолярном воздухе на различных высотах стала основой для определения величины необходимой человеку добавки кислорода.
Использование дополнительного кислорода для дыхания было оправданно и открывало перед воздухоплаванием новые возможности, но сложность и исключительно научное значение не способствовали развитию высотных полётов. На отношение к ним сильно повлияли и события с «Зенитом». Например, астроном и метеоролог Камиль Фламмарион (Camille Flammarion), совершавший полёты на аэростатах, после гибели Кроче-Спинелли и Сивеля писал: «На основании этих прискорбных опытов можно заключить, что наибольшая высота, за которую человек не должен переходить, равняется 8000 м»9. Ещё меньше необходимости идти на риск стало с началом запусков шаров-зондов.
Между тем в конце XIX века Германскому обществу воздухоплавания удалось заинтересовать своими идеями военных. В 1892 году по распоряжению кайзера Вильгельма II метеорологи впервые получили крупные ассигнования для организации исследовательских полётов. В результате были установлены новые рекорды. 4 декабря 1894 года профессор Артур Берсон (Arthur Berson) на аэростате «Феникс» достиг высоты 9155 м. 31 июля 1901 года Берсон и метеоролог Рейнхард Зюринг (Reinhard Süring) на аэростате «Пруссия» поднялись на 10 500 м, приблизившись к нижней границе стратосферы (по предположению Зюринга, максимальная высота, достигнутая в этом полёте, могла составлять 10 800 м).
«Поднимаясь всё выше, мы не чувствовали особенного ухудшения своего состояния, если не считать того, что нас начала охватывать слабость. Слабость становилась всё ощутимее. На высоте приблизительно 10 000 метров мы, однако, сумели сделать ещё четыре серии наблюдений с паузами по шесть минут. Достигнув высоты 10 230 метров и тщательно провентилировав кислородом свои лёгкие, мы провели ещё одну серию наблюдений. Мы всё время, без перерыва вдыхали кислород и, кроме того, были достаточно хорошо защищены от холода. Поэтому мы решили подняться ещё выше», — рассказывал Р. Зюринг о полёте 31 июля10.
Но Берсон и Зюринг тоже не избежали потери сознания. Как и экипаж «Зенита», они получали кислород через трубки с мундштуками, что не исключало дыхания через нос. Чтобы устранить эту проблему, в начале XX века стали использоваться дыхательные маски. Они были лишены указанного недостатка, зато имели множество других, из-за чего даже с появлением масок трубки с мундштуками оставались на службе до 1930-х годов.
И хотя рекордный полёт «Пруссии» не был полностью успешным и жизнь воздухоплавателей в нём подверглась огромному риску, можно сказать, что в начале XX века человеком была освоена уже вся высота тропосферы. «Ключом» к этому стало решение проблемы жизнеобеспечения. Путь дальше — полёты в стратосфере — требовал применения новых технологий, впервые задумываться о которых стали в XIX веке благодаря развитию водолазного дела и воздухоплавания.
Информация о книгах издательского дома «Интеллект» — на сайте www.id-intellect.ru
Комментарии к статье
1 Цитируется по: Чернов А. А. Путешествия на воздушном шаре. — Л.: Гидрометеоиздат, 1975, 232 с.
2 Воздухоплавание и авиация в России до 1907 г. Сборник документов и материалов / Под ред. В. А. Попова. — М.: Оборонгиз, 1956, 952 с.
3 Воздухоплавание и исследование атмосферы / под ред. М. М. Поморцева. — СПб, 1897, № 3, 119 с.
4 Glaisher J., Flammarion C., de Fonvielle W., Tissandier G. Voyages aériens. — Paris: L. Hachette et cie, 1870, 612 p.
5 Rochas M. L’invention du ballon-sonde // La Météorologie, 2003, № 43, р. 48—52.
6 Bert P. La pression barométrique: recherchés de physiologie expérimentale. — Paris, 1878, 1171 p.
7 Тиссандье Г., Фламмарион К. Путешествия по воздуху. — М., 1899, 383 с.
8 Сеченов И. М. Собрание сочинений. Т. 1: Экспериментальные исследования. — М.: Моск. ун-т, 1907, 261 с.
9 Святский Д. О. Что такое стратосфера. — М.; Л.: ОНТИ НКТП СССР, 1935, 120 с.
10 Цитируется по: Чернов А. А. Путешествия на воздушном шаре. — Л.: Гидрометеоиздат, 1975, 232 с.
Как высоко можно подняться на воздушном шаре
В рамках простой экскурсии воздушные шары поднимают на высоту от 200 до 1500 метров, но, конечно, есть смельчаки, которым эти цифры покажутся смешными
Впервые в небо на воздушном шаре с горячим воздухом поднялись французский физик Пилатр де Розье и маркиз д’Арландом 21 ноября 1783 года. За 25 минут они пролетели около 10 километров и поднялись на высоту одного километра. На сегодня рекордом высоты для теплового аэростата является полет Виджайпата Синганья, он совершил путешествие, поднявшись на максимальную высоту в 21 километр. Однако самая высокая отметка когда-либо достигнутая воздухоплавательным аппаратом составляет 53 километра! Этот рекорд высоты был поставлен беспилотным шаром японского космического агентства JAXA.
Безусловно, человеку будет очень сложно подняться на такую высоту в корзине шара, ведь уже на высоте в 7 километров дышать становится непросто, даже альпинисты используют кислородные баллоны в таких случаях. Помимо этого на такой высоте очень холодно, а значит, человеку необходимы специальные капсулы для подъема. Но есть и еще одна причина. Воздушные шары бывают двух видов: тепловые (монгольфьер) и газовые (шарльер). Первые поднимаются за счет того, что нагретый воздух внутри шара менее плотный и, следовательно, легче, чем окружающий. Однако чтобы горелка работала, нужен кислород, чем выше поднимается шар, тем больше разрежен воздух вокруг и тем меньше кислорода доступно.
На какой высоте катают на воздушном шаре?
Полеты на воздушном шаре все больше пользуются популярностью. Красочная и захватывающая прогулка над землей позволяет почувствовать себя птицей и насладиться свободой.
Свободный полет обеспечивает яркие и незабываемые ощущения, которые не забудутся никогда. Один раз прокатившись на воздушном агрегате, вы навсегда останетесь его поклонником!
Высота полета воздушного шара
Большинство новичков волнует вопрос, какая максимальная высота полета на воздушном шаре? Аэростат поднимают в воздух в зависимости от выбранной программы.
Как правило, при ознакомительном полете, пилот поднимает агрегат на расстояние до 500 метров (время подъема составляет 15-20 минут). С такой высоты, местные ландшафты кажутся более красочными и интересными.
При желании клиента и при хороших погодных условиях, воздушный шар может лететь на расстоянии 1000 м (1 км), которая считается максимальной. Во время полета можно устроить фотосессию или видеосъёмку.
Для тех, кто считает свободный полет экстремальным, предлагается полет на привязанном воздушном шаре. На привязи воздушный шар поднимается на расстояние 50 метров. В этом случае он крепится к наземным конструкциям специальными тросами и страховочными фалами.
Подвязной шар может одновременно поднять на высоту около 40 человек. Именно поэтому такое мероприятие зачастую заказывают на различные праздники, корпоративы.
Особенно такие полеты вызывают интерес у детей и взрослых отдыхающих в санаториях, пансионатах, лагерях, базах отдыха.
Полеты на воздушных шарах проводят опытные и профессиональные пилоты, которые могут быстро сориентироваться в опасных ситуациях. Они обеспечат безопасность и комфорт.
Кроме того, полет контролируется с земли с помощью радиосвязи. Тепловой аэростат на автомобиле сопровождает наземная команда из опытных инструкторов.
В США изобрели воздушный шар, который может совершать полеты на высоте 30 км
В США полных ходом идет разработка воздушного шара, который сможет подниматься на высоту 30 км. Его будут использовать для коммерческих полетов.
Суть в том, что к шару подсоединяется кабина, рассчитанная на шестерых пассажиров. После того, как агрегат поднимется на необходимую высоту, произойдет отделение кабины, которая будет возвращена на землю. Стоимость одного полета будет составлять примерно 75000$.
Желаете заказать услугу? Звоните нам по телефону 8-911-016-77-13
FrequentFlyers.ru
Ликбез, Личный опыт, Обзоры, Репортажи
Как все устроено: пассажирский воздушный шар
26/03/2018
С воздушных шаров когда-то начиналась гражданская авиация: до самолетов и вертолетов было как до Луны пешком, а на шарах люди начали летать еще в 18-ом веке. Сегодня мы расскажем, как это происходит в 21-ом: я отправился в Каппадокию — регион в центральной Турции — где массовые перелеты выполняются практически каждый день; шаров в воздухе — несколько десятков одновременно, а пассажиров, соответственно, несколько сотен.
Немного физики. Как летает воздушный шар
Современный пассажирский воздушный шар правильно называть тепловым аэростатом, или монгольфьером — по фамилии братьев Монгольфье, которые в 1783 году совершили первый полет на воздушном судне этого типа. В рамках импортозамещения популярна стала история о том, что на самом деле первый тепловой аэростат построил за полвека до этого русский изобретатель Крякутной, но это всего лишь мистификация, созданная уже после полета французов и распиаренная в советские времена.
Принцип полета теплового аэростата очень прост: внутри его оболочки находится воздух, температура которого выше, чем температура окружающего воздуха. Поскольку плотность теплого воздуха ниже, он по закону Архимеда стремится вверх под действием выталкивающей силы. При этом сама оболочка и полезная нагрузка притягиваются к Земле (оболочка размерами примерно 25х15 м с корзиной и всем оборудованием весит 400-500 кг, плюс пассажиры: в нашей корзине было человек двадцать). Равенство этих сил позволяет аэростату «зависать» в воздухе на определенной высоте.
Как управляют воздушным шаром
Главный орган управления тепловым аэростатом — это газовая горелка, расположенная под оболочкой и направленная вверх. В ней горит смесь пропана и бутана, которую берут на борт в баллонах, похожих на те, что стоят у многих дачников на кухне. При помощи огня нагревается воздух в оболочке; температура растет, шар поднимается. В зависимости от объема оболочки (2-5 тыс. куб. метров воздуха), полезной загрузки и температуры окружающего воздуха температура внутри составляет 50-130 градусов Цельсия. Воздух в оболочке постоянно остывает и шар начинает снижаться, поэтому нужно периодически «поддавать жару» для сохранения постоянной высоты. В общем, все просто: больше огня — поднимаемся, меньше огня — сохраняем высоту, мало-мало-мало-мало-мало огня — снижаемся.
Впрочем, чтобы снизиться, можно не ждать, пока воздух остынет: в верхней части оболочки имеется клапан, открываемый и закрываемый веревками. Если его открыть, часть теплого воздуха выйдет наружу и шар полетит вниз.
С собой берут как минимум два баллона газа (один основной, другой запасной) —этого хватает примерно на один час полета, вариометр для измерения вертикальной скорости и рацию для связи с пилотами других шаров и автомобилей сопровождения (о них чуть ниже). И, самое главное, никаких мешком с песком нет. Они используются в качестве балласта на газовых шарах (с гелием и другими подобными газами внутри), а тепловому аэростату не нужны.
Верхний клапан открыт, шар сдувается. Обратите внимание на номер. В Турции шары имеют регистрацию вида TC-Bxx, например, ТС-BUM. В России они регистрируются в реестре авиации общего назначения и имеют номера RA-xxxxG. Каждый шар имеет сертификат летной годности, все как положено.
Куда летит воздушный шар?
Управлять мы можем только вертикальной скоростью аэростата. Горизонтально же он летит туда, куда его несет ветер. Именно поэтому как полноценное транспортное средство воздушный шар непригоден: это все-таки прогулочное воздушное судно. Несмотря на это, полеты на шарах зарегулированы авиационными властями не меньше, чем на самолетах. Каждый шар имеет регистрацию в реестре воздушных судов и соответствующий номер на борту, а пилоты (их два) — лицензию. Полеты выполняются по правилам визуальных полетов, то есть, при хорошей видимости, обязательным условием является также отсутствие сильного ветра. Проблема еще и в том, что летать можно только рано утром на рассвете или, наоборот, на закате: днем восходящие воздушные потоки от нагретой солнцем земной поверхности делают полеты небезопасными (да и утром потоки вверх и вниз есть, просто не такие сильные). Так что можно запросто столкнуться с ситуацией, когда вы приехали, но никуда не полетели — планируйте на всякий случай сразу несколько дней!
У каждого аэростата есть свой автомобиль сопровождения: джип с прицепом-платформой размером с корзину. Джип — потому, что сядет шар, скорее всего, не на дорогу. Высший пилотаж — это посадка прямо на платформу; гораздо круче, чем сажать истребитель на авианосец.
Если шары сталкиваются друг с другом в воздухе, то… ничего не происходит, они просто отталкиваются друг от друга и летят дальше. Вообще же столкнуться шарам довольно сложно: ведь ветер несет их в одну и ту же сторону.
Как проходит полет на воздушном шаре
Сначала вас привозят к вашему воздушному шару. В этот момент он еще лежит на земле, корзина на боку, а при помощи мощного вентилятора оболочку наполняют воздухом, одновременно нагревая его горелкой. В какой-то момент обмякший шар становится упругим и взмывает ввысь. Корзину переворачивают, пассажиры садятся в нее, перелезая через борт. Внутри есть двухточечные ремни, которыми, впрочем, мало кто пользуется, а также веревки, за которые нужно будет держаться при посадке. Предполетный инструктаж, собственно, и заключается в том, что при посадке нужно обязательно присесть и держаться за веревки, поскольку велика вероятность опрокидывания корзины: это позволит избежать травм.
Подготовка к полету
Пилот дает еще огня, и… шар плавно взмывает вверх и в сторону. По ощущениям это похоже на катание на колесе обозрения, только гораздо выше. И при этом никакого шума или вибрации, так что не страшно даже матерым аэрофобам. И даже тем, кто боится высоты (а шар поднимается до 1500 м при средней высоте полета около 500), не страшно: из-за высокого (около 1,5 метров) борта корзины вывалиться из нее невозможно, а стоячая поза провоцирует на то, чтобы смотреть не вниз, а в стороны. Красота неописуемая! Самый настоящий Татуин! Турецкие пилоты стараются лететь так, чтобы пройти поближе к скалам, «дымоходам» и дать возможность их рассмотреть, спускаются почти до крыш домов старинных деревушек — разумеется, все можно фотографировать и снимать на видео, главное — не выронить камеру.
Высота полета достигает 1500 м
Ветра на высоте, кстати, нет — вернее, он не ощущается, ведь вы летите вместе с этим самым ветром!
Как полетать на воздушном шаре
Каппадокия, как вы уже поняли — место, где полеты на воздушных шарах являются развитым и массовым видом отдыха. Вам нужно будет добраться до города Ургюп, что в 70 км от Кайсери, где находится ближайший гражданский аэропорт (ASR). До Кайсери выполняется несколько ежедневных рейсов из Стамбула (IST и SAW) местными авиакомпаниями: Turkish Airlines, Anadolujet, Pegasus Airlines и пр. Лететь около полутора часов. До самого Стамбула, ясное дело, летает множество различных авиакомпаний — от «Аэрофлота» и Turkish Airlines до Onur Air и «Победы». Покупка двух раздельных билетов до Стамбула и до Кайсери может помочь вам неплохо сэкономить (а заодно и провести пару дней в Стамбуле).
Низкий проход над горой — одна из фигур пилотажа на воздушных шарах
Самих авиакомпаний с воздушными шарами в Ургюпе более десятка; приобрести полет можно и через их российских партнеров, просто набрав в Google соответствующий запрос — удобно, если вы не знаете турецкого и хотите все запланировать заранее, а можно и непосредственно в отеле в Ургюпе, но тут все уже зависит от отеля. Ориентируйтесь на то, что стоимость часового полета составляет 13000 рублей с человека, включая трансфер из вашего отеля и обратно и скромный завтрак в непросредственной близости от точки старта (чай-кофе-булочки).
Видео (предполетный инструктаж, проход на малой высоте, посадка на авианосец, уборка шара):