на линиях с какой величиной напряжения применяют штыревые изоляторы
Какие бывают электрические изоляторы и для чего они предназначены?
Обязательным условием для передачи электрической энергии является проводниковый материал, необходимый для протекания тока. Но для исключения возможности попадания потенциала на несущие конструкции и другие элементы устанавливаются электрические изоляторы. В современной электротехнике невозможно представить себе работу каких-либо силовых устройств без изоляторов.
Что из себя представляют электрические изоляторы?
Электрические изоляторы представляют собой диэлектрический элемент электроустановки, конструктивно выполняемый из изоляционного материала и армирующих деталей. Диэлектрик предназначен для электрического отделения, а металлические конструкции позволяют зафиксировать как сам изолятор, так и проводники на нем. В качестве диэлектрического материала используется стекло, полимер или керамика.
Назначение
Электрические изоляторы предназначены для крепления шин, проводов, тралеи и прочих токоведущих элементов к корпусу электроустановки, консолям опор и прочим конструкциям. Помимо этого они изолируют проводники при прохождении через стены, позволяют отделить электроустановки друг от друга и прочие несущие функции.
В зависимости от места установки их подразделяют на внутренней и наружной. Также немаловажное значение играет класс напряжения, на который рассчитан тот или иной изолятор. Из-за чего будет отличаться его конструктивное исполнение и определенные технические характеристики, определяющие возможность их применения в тех или иных электроустановках [ 1 ].
Основные технические характеристики
В соответствии с требованиями нормативных документов, для электрических изоляторов регламентируются такие характеристики:
При таком потоке струй под углом 45°, которые обозначены на рисунке 2 буквой А, обеспечивается максимальное обтекание поверхности Б, и, как следствие, обеспечивается минимальное сопротивление электрическому току – от 9,5 до 10,5 кОм*см. Этот параметр всегда ниже сухоразрядного.
Проверка технических характеристик.
Следует отметить, что испытательные процедуры не являются обязательными для всех изоляторов, выпускаемых на заводе. Электрическим, термическим и механическим воздействиям подвергаются только 0,5% от партии. Обязательной для всех изоляторов является проверка напряжением перекрытия в течении трех минут, при котором на изоляторе возникают искровые разряды.
У подвесных изоляторов обязательно проверяется механическая характеристика. Для этого в течении минуты к нему прикладывается механическая нагрузка, которую регламентируют заводские или государственные нормы.
Такие испытания обеспечивают нормальную работу электрических изоляторов при номинальных токах и номинальных напряжениях в сети. А также, достаточный уровень надежности. Кроме этого, некоторые модели подвергаются периодической проверке в ходе эксплуатации. По результатам периодических осмотров и испытаний они могут проходить очистку, выбраковку и замену.
Типовая конструкция
Для начала разберем пример типовой конструкции на эскизе штыревого изолятора.

Как видите на рисунке 3, в конструкции предусмотрены ребра А и Б. Которые позволяют увеличить электрическую прочность за счет удлинения пути для тока утечки по поверхности. В связи с различными углами уклона ребер обеспечивается возможность защиты от выпадающих осадков. Так ребра А имеют меньший уклон, поэтому они наиболее актуальны для твердых осадков – снега, грязи и т.д. Потому что влага может подлизываться под низ и значительно сокращать величину разрядного напряжения.
В отличии от них, юбки Б позволяют полностью исключить возможность попадания влаги при дождливой погоде. Это обеспечивает постоянный запас сопротивления, которое и гарантирует величину напряжения пробоя. Помимо этого, юбки Б не боятся намерзания гололеда и могут обеспечивать нормальную работу высоковольтных линий в случае сложной метеорологической ситуации.
Для крепления головки стержня предусмотрена резьба В, которая позволяет закрепить конструкцию на консоли или армирующих крюках. В верхней части находится желоб Г для фиксации провода. Дополнительно провод увязывается проволокой для более надежного крепления воздушных ЛЭП.

Проходной изолятор имеет немного иную конструкцию, так как его задача не только изолировать токоведущую шину от стены, но и обеспечить нормальное протекание тока внутри самого изолятора. Посмотрите, шина обжимается с обеих сторон алюминиевой крышкой для ее надежного закрепления снаружи. Внутри механическое крепление осуществляется за счет герметика, который помимо этого предотвращает попадание загрязнителей и агрессивных веществ. Также для удобства крепления проводов или шин может устанавливаться дополнительный лепесток на самой крышке, как показано на рисунке 4.
Защитная оболочка из кремнийорганической резины препятствует электрическому пробою по поверхности от шины до фланца. Изоляция от пробоя внутренних элементов выполняется посредством стеклопластиковой трубы, которая помещается внутрь ребристой рубашки. Более детальную информацию о параметрах можно почерпнуть из обозначения модели.
Обозначения изоляторов
В маркировке каждого изделия содержится информация о его типе, материале и прочих характеристиках. Посмотрите пример маркировки для изолятора НСПКр 120 – 3/0,6 – Б.
Классификация
Для обеспечения надежного электроснабжения и соблюдения максимального уровня безопасности в каждом конкретном случае в электроустановках должны применяться изоляторы соответствующего типа и конструкции. В зависимости от критерия выделяют несколько параметров их классификации.
По назначению
В зависимости от назначения выделяют такие виды изоляторов:
По материалу исполнения
В зависимости от применяемого диэлектрика выделяют такие виды изоляторов:
По способу крепления на опоре
В зависимости от способа крепления бывают:
Видео в дополнение темы
Обзор электрических изоляторов типа «ПС»:
Как определить напряжение ЛЭП по внешнему виду и количеству изоляторов
Многие люди даже и не задумываются над этим вопросом. Ведь чаще всего рядового гражданина интересует электричество внутри дома, а внешними линиями (ЛЭП), как он думает, должны заниматься специалисты…
Умение распознать напряжение ЛЭП
Многие люди даже и не задумываются над этим вопросом. Ведь чаще всего рядового гражданина интересует электричество внутри дома, а внешними линиями (ЛЭП), как он думает, должны заниматься специалисты. Но важно учесть каждому, что незнание простых различий между воздушными линиями электропередач (ВЛ) может стать причиной увечий или даже смерти человека.
Что обозначают надписи на опорах ВЛ?
Наверняка многие видели надписи на опорах ЛЭП в виде букв и цифр, но не каждый знает, что они означают.
Фото 10. Обозначения на опорах ЛЭП.
Означают они следующее: заглавной буквой обозначается класс напряжения, например Т-35 кВ, С-110 кВ, Д-220 кВ. Цифра после буквы указывает на номер линии, вторая цифра указывает на порядковый номер опоры.
Данный способ определения напряжения ЛЭП по количеству изоляторов в гирлянде не является точным и не дает 100% гарантии. Россия огромная страна, поэтому для разных условий эксплуатации ЛЭП (чистота окружающего воздуха, влажность и т.д.) проектировщики рассчитывали разное количество изоляторов и использовали разные типы опор. Но если к вопросу подходить комплексно и определять напряжение по всем критериям, которые описаны в статье, то можно достаточно точно определить класс напряжения. Если Вы далеки от электроэнергетики, то для 100% определения напряжения ЛЭП Вам все же лучше обратится в местное энергетическое предприятие.
Данная стать написана на основании пункта 1.9 ПУЭ и инструкции по выбору изоляции электроустановок РД 34.51.101-90.
Количество изоляторов на ЛЭП (в гирлянде ВЛ)
Количество подвесных изоляторов в гирляндах ВЛ на металлических и железобетонных опорах ЛЭП в условиях чистой атмосферы (с обычным полевым загрязнением).
| Тип изолятора по ГОСТ | ВЛ 35 кВ | ВЛ 110 кВ | ВЛ 150 кВ | ВЛ 220 кВ | ВЛ 330 кВ | ВЛ 500 кВ |
| ПФ6-А (П-4,5) | 3 | 7 | 9 | 13 | 19 | — |
| ПФ6-Б (ПМ-4,5) | 3 | 7 | 10 | 14 | 20 | — |
| ПФ6-В (ПФЕ-4,5) | 3 | 7 | 9 | 13 | 19 | — |
| (ПФЕ-11) | — | 6 | 8 | 11 | 16 | 21 |
| ПФ16-А | — | 6 | 8 | 11 | 17 | 23 |
| ПФ20-А (ПФЕ-16) | — | — | — | 10 | 14 | 20 |
| (ПФ-8,5) | — | 6 | 8 | 11 | 16 | 22 |
| (П-11) | — | 6 | 8 | 11 | 15 | 21 |
| ПС6-А (ПС-4,5) | 3 | 8 | 10 | 14 | 21 | — |
| ПС-11 (ПС-8,5) | 3 | 7 | 8 | 12 | 17 | 24 |
| ПС16-А | — | 6 | 8 | 11 | 16 | 22 |
| ПС16-Б | — | 6 | 8 | 12 | 17 | 24 |
| ПС22-А | — | — | — | 10 | 15 | 21 |
| ПС30-А | — | — | — | 11 | 16 | 22 |
ЛЭП и санитарные зоны
Начиная какую-либо деятельность вблизи ЛЭП нужно учесть и установленные санитарно-контрольные зоны. В таких местах действуют множество ограничений. Запрещено:
Пределы санитарно-контрольной зоны следующие:
Может ли обычный человек визуально определить напряжение ЛЭП?
Некоторые отклонения возможны, но в большинстве случаев, учитывая определенные параметры, можно вполне легко определить напряжение ЛЭП по внешнему виду.
В зависимости от вида изолятора
Основное правило здесь: «Чем мощнее ЛЭП, тем больше изоляторов вы увидите на гирлянде».
Рис.1 Внешние изоляторы ЛЭП 0,4 кВ, 10 кВ, 35 кВ
Наиболее распространенные изоляторы ВЛ-0,4кВ. На вид они небольшого размера, обычно из стекла либо фарфора.
ВЛ-6 и ВЛ-10 на вид той же формы, но размером значительно больше. Помимо штыревого крепления, иногда используют данные изоляторы наподобие гирлянд по одному/двум образцам.
На ВЛ-35кВ в основном монтируют подвесные изоляторы, хотя иногда встречаются еще штыревые. Гирлянда состоит из трех-пяти экземпляров.
Рис.2 Изоляторы типа гирлянд
Изоляторы типа гирлянд свойственны исключительно для ВЛ-110кВ, 220кВ, 330кВ, 500кВ, 750кВ. Количество образцов в гирлянде следующее:
В зависимости от количества проводов
В зависимости от вида опор
Рис.3 Типы опор высоковольтных линий
Сегодня в качестве опор для линий электропередач напряжением 35-750 кВ наиболее часто используют железобетонные стойки СК 26.
Если же у вас есть намерение проводить на определенном участке какие-либо серьезные работы, и вы сомневаетесь в защитной зоне ЛЭП, то надежнее будет обратиться за информацией в энергетическую компанию вашего населенного пункта.
Как определить напряжение ЛЭП?
Большинство обывателей никогда не задумывается об окружающих их линиях электропередач. Чаще всего такое отношение обуславливается отсутствием практического использования этого знания в быту, однако в некоторых ситуациях такая осведомленность может обезопасить от поражения электрическим током и даже спасти жизнь. Поэтому далее мы рассмотрим, как определить напряжение ЛЭП посредством доступных вам факторов.
Классификация ВЛ
Специалисты в области электротехники прекрасно ориентируются не только в обслуживаемых электроустановках, но и в мерах безопасности, которые необходимо соблюдать при выполнении работ и нахождении в непосредственной близи от трасы ВЛ. Однако если вам чужды понятия электробезопасности в части эксплуатации электроустановок, то все попытки порыбачить под опорами ВЛ или произвести какие-либо погрузочно-разгрузочные работы в охранной зоне могут закончиться плачевно.
Именно для предотвращения поражения электрическим током все ваши действия должны производиться в безопасной зоне. Чтобы определить это пространство или зону ЛЭП, вы должны иметь хотя бы элементарные представления о существующих разновидностях.
Все ЛЭП можно разделить по нескольким категориям в зависимости от величины номинального напряжения:
В целях безопасности для каждого из типа линий предусмотрено расстояние вдоль воздушных ЛЭП, как на постоянной основе, так и при выполнении каких-либо работ. Эти величины регламентированы п.1.3.3 «Правил Охраны Труда При Работе В Электроустановках«, которые приведены в таблице ниже:
Таблица: допустимые расстояния до токоведущих частей, находящихся под напряжением

Определение напряжения ЛЭП
Разумеется, что кабельные линии электропередач в большинстве своем скрыты, да и находящиеся на открытом воздухе далеко не всегда можно различить визуально.
А вот воздушные линии можно определить по:
Поэтому далее рассмотрим систему определения величины напряжения ЛЭП по основным визуальным критериям.
По количеству проводов
В зависимости от числа проводов все ЛЭП подразделяются таким образом:
По внешнему виду опор
Помимо этого, многое можно сказать о напряжении в ЛЭП по виду установленных опор. Как указано в таблице выше, каждый номинал напряжения имеет допустимое минимальное безопасное расстояние. Поэтому, чем он больше, тем выше располагаются провода. Соответственно, габариты и конструкция опоры должна обеспечивать допустимые расстояния в стреле провеса.
Сегодня опоры подразделяются по материалу, из которого они изготовлены:
По конструктивному исполнению встречаются:
Внешнему виду и числу изоляторов
Чем выше напряжение в ЛЭП, тем большей электрической прочностью должны обладать изоляторы. Соответственно сопротивление электрическому току повышается за счет увеличения длины пути тока утечки, чем выше напряжение, тем больше сам изолятор, тем больше ребер расположено на рубашке, помимо этого ребра могут усиливаться несколькими кольцами. Еще одним приемом для повышения диэлектрической устойчивости ЛЭП по отношению к опоре является сборка из нескольких последовательно включенных изоляторов – гирлянда ВЛ.
Чем больше гирлянды изоляторов, тем выше разность потенциалов они могут выдержать, однако не стоит путать с параллельно собранными изоляторами, они предназначены для повышения надежности в местах прохода ЛЭП над дорогами, другими линиями, коммуникациями и сооружениями.
Фото примеры внешнего вида
Чтобы сопоставить изложенную выше информацию с ее практической реализацией следует разобрать особенности каждого класса напряжения. Для лучшего понимания, как неискушенному обывателю с первого взгляда определить величину напряжения в ЛЭП, рассмотрим наиболее распространенные примеры.
ВЛ-0.4 кВ
Это линии минимального напряжения, передающие питание к бытовым нагрузкам, опоры выполнены железобетонными или деревянными конструкциями. Изоляторы, как правило, штыревые из фарфора или стекла по одному на каждой консоли, число проводов 2 или 4, размеры охранной зоны составляют 10м.

ВЛ-10 кВ
Эти линии не сильно отличаются от низкого напряжения, как правило, имеют 3 провода, также располагаются на железобетонных стойках, значительно реже на деревянных. Охранная зона для ЛЭП 6, 10кВ составляет также 10м, изоляторы немного больше, имеют более ярко выраженную юбку и ребра.

ВЛ-35 кВ
Линии переменного тока на 35кВ устанавливаются на металлические или железобетонные конструкции, оснащаются крупными изоляторами штыревого или подвесного типа (гирлянда от 3 до 5 штук). Могут иметь разделение на несколько линий – три или шесть проводов на опоре, охранная зона составляет 15м.

ВЛ-110 кВ
Конструкция опоры для ЛЭП 110кВ идентична предыдущей, но для подвешивания проводов применяется гирлянда из 6 – 9 изоляторов. Охранная зона составляет 20м.

ВЛ-220 кВ
Для каждой фазы ЛЭП выделяется только один провод, но он значительно толще, чем при напряжении 110кВ, допустимое приближение не менее 25м. В гирлянде чаще всего 10 или 14 изоляторов, но в некоторых ситуациях встречаются конструкции из двух гирлянд по 20 единиц.

ВЛ-330 кВ
ЛЭП с напряжением 330кВ для передачи допустимой мощности уже используют расщепление, поэтому в каждой фазе присутствует два провода. В гирлянде от 16 до 20 изоляторов, охранная зона составляет 30м.

ВЛ-500 кВ
Такие ЛЭП сверхвысокого напряжения имеют расщепление на 3 провода для каждой фазы, в гирляндах устанавливается более 20 единиц. Охранная зона также 30м.

ВЛ-750 кВ
Здесь применяются исключительно металлические опоры, в каждой фазе используется от 4 до 5 расщепленных жил в форме квадрата или пятиугольника. Изоляторов также более 20, а допустимое приближение ограничено территорией в 40 м.

ВЛ-1150 кВ
Такая ЛЭП редко встречается, но в ее фазах расщепление состоит из 8 жил, расположенных по кругу. Гирлянды содержат около 50 изоляторов, а охранная зона составляет 55 м.

На линиях с какой величиной напряжения применяют штыревые изоляторы
ИЗОЛЯТОРЫ ЛИНЕЙНЫЕ ШТЫРЕВЫЕ ФАРФОРОВЫЕ И СТЕКЛЯННЫЕ НА НАПРЯЖЕНИЕ ОТ 1 ДО 35 кВ
Общие технические условия
Porcelain and glass pin type insulators for voltage from 1 to 35 kV. General specifications
Дата введения 2018-07-01
Предисловие
Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»
Сведения о стандарте
1 РАЗРАБОТАН Некоммерческим партнерством разработчиков, производителей и поставщиков изоляционных устройств и материалов, арматуры и защитных устройств для электрических сетей «Электросетьизоляция», Публичным акционерным обществом «Межрегиональная распределительная сетевая компания Волги»
2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 августа 2017 г. N 102-П)
За принятие проголосовали:
Сокращенное наименование национального органа по стандартизации
Госстандарт Республики Беларусь
4 Приказом Федерального агентства по техническому регулированию и метрологии от 17 октября 2017 г. N 1434-ст межгосударственный стандарт ГОСТ 1232-2017 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2018 г.
1 Область применения
Настоящий стандарт распространяется на фарфоровые и стеклянные линейные штыревые изоляторы, предназначенные для изоляции и крепления проводов на воздушных линиях электропередачи и в распределительных устройствах электростанций и подстанций переменного тока напряжением от 1 до 35 кВ включительно частотой до 100 Гц при температуре окружающего воздуха от плюс 50°С до минус 60°С.
Настоящий стандарт распространяется на вновь разрабатываемые штыревые изоляторы.
Штыревые изоляторы, разработанные до введения настоящего стандарта, должны соответствовать техническим условиям, утвержденным в установленном порядке, а также настоящему стандарту в части требований к приемке, методам испытаний, монтажу, маркировке, упаковке, транспортированию, хранению и гарантий изготовителя. Настоящий стандарт не распространяется на штыревые изоляторы, разработанные до введения настоящего стандарта, в части обозначения и технических требований.
2 Нормативные ссылки
В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:
ГОСТ 2.601-2013 Единая система конструкторской документации. Эксплуатационные документы
ГОСТ 9.307-89 Единая система защиты от коррозии и старения. Покрытия цинковые горячие. Общие требования и методы контроля
ГОСТ 1516.2-97 Электрооборудование и электроустановки переменного тока на напряжение 3 кВ и выше. Общие методы испытаний электрической прочности изоляции
ГОСТ 6581-75 Материалы электроизоляционные жидкие. Методы электрических испытаний
ГОСТ 9920-89 (МЭК 694-80, МЭК 815-86) Электроустановки переменного тока на напряжение от 3 до 750 кВ. Длина пути утечки внешней изоляции
ГОСТ 10390-2015 Электрооборудование на напряжение свыше 3 кВ. Методы испытаний внешней изоляции в загрязненном состоянии
ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды
ГОСТ 15543.1-89 Изделия электротехнические и другие технические изделия. Общие требования в части стойкости к климатическим внешним воздействующим факторам
ГОСТ 17512-82 Электрооборудование и электроустановки на напряжение 3 кВ и выше. Методы измерения при испытаниях высоким напряжением
ГОСТ 18321-73 Статистический контроль качества. Методы случайного отбора выборок штучной продукции
ГОСТ 18620-86 Изделия электротехнические. Маркировка
ГОСТ 20419-83 Материалы керамические электротехнические. Классификация и технические требования
ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия
ГОСТ 23706-93 (МЭК 51-6-84) Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 6. Особые требования к омметрам (приборам для измерения полного сопротивления) и приборы для измерения активной проводимости
ГОСТ 24409-80 Материалы керамические электротехнические. Методы испытаний
ГОСТ 26196-84 (МЭК 437-73) Изоляторы. Метод измерения индустриальных радиопомех
3 Термины и определения
В настоящем стандарте применены следующие термины с соответствующими определениями:
3.1 арматура изолятора: Элементы конструкции изолятора, не являющиеся изоляционной частью, предназначенные для механического крепления к электроустановкам или объектам, а также для крепления проводов и других токоведущих элементов.
3.2 бугорки: Острые и плоские возвышенности на поверхности фарфорового изолятора без внутренних полостей, образовавшиеся в результате механического воздействия на полуфабрикат до обжига.
3.3 включение: Дефект арматуры изолятора в виде инородного включения, имеющего поверхность раздела с отливкой.
3.4 внешняя поверхность: Поверхность керамической части изолятора, доступная для осмотра в армированных изоляторах.
3.5 внутренняя поверхность: Поверхность керамической части изолятора, скрытая от обозрения невооруженным глазом в армированных изоляторах.
3.6 вскип: Дефект арматуры изолятора в виде скопления раковин и наростов, образовавшихся вследствие парообразования в местах переувлажнения литейной формы или проникновения газов из стержней в полость литейной формы.
3.7 выгорки: Углубления на поверхности фарфорового изолятора, образовавшиеся от выгорания крупных органических включений, попавших в массу.
3.8 вылом: Дефект арматуры изолятора в виде нарушения конфигурации и размера отливки при выбивке, обрубке, отбивке литников и прибылей, очистке и транспортировании.
3.9 выплавки: Вкрапления на поверхности фарфорового изолятора в виде пятен или застывшего расплава, образовавшиеся во время обжига от попадания в массу различных минеральных веществ.
3.10 головка изолятора: Верхняя часть тела изолятора, на которой крепится провод или арматура.
3.11 длина пути утечки изолятора: Кратчайшее расстояние или сумма кратчайших расстояний по контуру наружной изоляционной поверхности между частями, находящимися под разными электрическими потенциалами.
Если на часть изоляционной поверхности наносят полупроводящую глазурь, то эту часть следует рассматривать как эффективную изоляционную поверхность, а кратчайшее расстояние по ней включать в длину пути утечки.
3.12 закрытые пузыри: Газовые включения в изоляционной части шарообразной или неправильной формы, не имеющие сообщения с наружной атмосферой, диаметром или наибольшим линейным размером, равным или превышающим 0,8 мм.
3.13 залив: Дефект арматуры изолятора в виде металлического прилива или выступа, возникающего вследствие проникновения жидкого металла в зазоры по разъемам формы, стержней или по стержневым знакам.
3.14 засорка: Поверхность фарфорового изолятора с прилипшими в процессе обжига частицами керамического материала или огнеприпаса.
3.15 заусенцы: Выступы стекла на поверхности стеклянного изолятора в местах соединения полуформ, формующего кольца с пресс-формой, пуансоном, и поддона с полуформами.
3.16 изоляционная часть (изоляционная деталь): Элемент изолятора, выполненный из электроизоляционного материала и несущий электрическую нагрузку.
3.17 инородные включения: Кристаллы различных соединений, вкрапленные в стекло и представляющие собой огнеупорные включения, продукты кристаллизации стекломассы и посторонние загрязнения.
3.18 кованность: Неровная шероховатая поверхность локального характера на поверхности стеклянного изолятора.
3.19 конструктивное исполнение штыревого изолятора: Вариант исполнения изолятора, при котором отличительными признаками являются механические и/или электрические характеристики, а также конфигурация ребер изолятора.
3.20 крюк изолятора: Нижняя арматура штыревого изолятора с загнутым концом, который закреплен в теле изолятора.
3.21 металлический блеск: Цветовое отклонение в виде радужных пятен восстановленного металла на глазурованной поверхности фарфорового изолятора.
3.22 механическая разрушающая сила: Наименьшее значение силы, приложенной к изолятору в определенных условиях, при которой он разрушается.
3.23 механическое повреждение: Сколы, трещины на теле изолятора, пластическая деформация арматуры изолятора.
3.24 механическое разрушение: Полная потеря механической прочности; появление при испытаниях внутренних (невидимых снаружи) повреждений, сопровождающихся остановкой (снижением) показаний измерительного прибора.
3.25 многоэлементный изолятор: Изолятор, изоляционная часть которого состоит из двух или более изоляционных частей в форме колокола или тарелки, с ребрами или без ребер, соединенных между собой.
3.26 модификация штыревого изолятора: Вариант исполнения изолятора, при котором механические и электрические характеристики, а также конфигурация ребер изолятора идентичны, а отличительными признаками являются конфигурация головки изолятора и/или наличие дополнительных элементов, облегчающих монтаж.
3.27 мошка: Газовые включения (закрытые полости) в стекле диаметром менее 0,8 мм.
3.28 мушки: Резко выделяющиеся пятна на поверхности фарфоровых изоляторов, не нарушающие целостности поверхности глазурованного слоя.
3.29 наколы: Мелкие точечные углубления в глазури фарфорового изолятора без образования углублений в черепке.
3.30 нарост: Дефект арматуры изолятора в виде выступа произвольной формы, образовавшегося из загрязненного формовочными материалами металла вследствие местного разрушения литейной формы.
3.31 нарушение резьбы: Отсутствие или нарушение витков резьбы на изоляторе, предусмотренной чертежом.



