на листьях водных растений видны скопления мелких пузырьков газа укажите какой это газ
Тест по теме Ботаника
1) На свету в клетках растения наряду с дыханием, в ходе которого кислород поглощается (углекислый газ выделяется), происходит фотосинтез, в ходе которого кислород выделяется (углекислый газ расходуется)
2) В результате фотосинтеза кислорода образуется в несколько раз больше, чем поглощается при дыхании растений
1) Яичная скорлупа, надетая на тонкие прутики, создает иллюзию присутствия бабочки-капустницы на огороде
2) Некоторые садоводы считают, что такой прием помогает отпугивать от посадок капусты бабочек-белянок
1) На корнях бобовых растений образуются клубеньки, представленные скоплением азотфиксирующих (клубеньковых) бактерий
2) Эти бактерии способны фиксировать атмосферный азот и переводить его в формы, которые доступны для усвоения растениями (нитраты)
1) В целях сохранения влаги в почве
2) В целях улучшения аэрации почвы (газообмена) и усиления дыхания корней
1) Усы получены путем бесполого вегетативного размножения
2) Различия в плодах связаны с фенотипической (ненаследственной, модификационной) изменчивостью, обусловленной различными условиями внешней среды, в которых выращивались материнские и дочерние растения
1) На листьях под водой скапливается кислород
2) Кислород является продуктом светозависимой (световой) фазы фотосинтеза, образуется в ходе фотолиза воды как побочный продукт, после чего удаляется из растения
1) В стебле гороха посевного плохо развита механическая ткань
2) Своими усиками (видоизмененными листьями) горох посевной цепляется за окружающие его прямостоячие злаковые растения, тем самым выносит листья к свету
Тест по теме Лист
1) На свету в клетках растения наряду с дыханием, в ходе которого кислород поглощается (углекислый газ выделяется), происходит фотосинтез, в ходе которого кислород выделяется (углекислый газ расходуется)
2) В результате фотосинтеза кислорода образуется в несколько раз больше, чем поглощается при дыхании растений
1) Чаша весов, в которой расположена ветка растения, поднимается вверх
2) В результате всасывания воды из чаши, перемещения ее по проводящим тканям вверх, к листу, и последующих процессов транспирации и газообмена вес сосуда изменился
3) Через устьица листа, расположенные в эпидермисе, вода испаряется
1) Уровень воды изменился в зависимости от оставшихся листьев на ветке: чем больше листьев было оставлено на ветке, тем меньше оказывался уровень воды в сосуде
2) Путем измерения уровня воды становится возможно получение данных о процессе поглощения и испарения воды растением
3) Стефан Хейлз выявил закономерность: количество поглощаемой растением воды прямо пропорционально (напрямую зависит) от общей площади поверхности листьев
1) На листьях под водой скапливается кислород
2) Кислород является продуктом светозависимой (световой) фазы фотосинтеза, образуется в ходе фотолиза воды как побочный продукт, после чего удаляется из растения
Задания части 2 ЕГЭ по теме «Пластиды, фотосинтез»
1. Как происходит преобразование энергии солнечного света в световой и темновой фазах фотосинтеза в энергию химических связей глюкозы? Ответ поясните.
1) В световой фазе фотосинтеза энергия солнечного света преобразуется в энергию возбужденных электронов, а затем энергия возбужденных электронов преобразуется в энергию АТФ и НАДФ-Н2.
2) В темновой фазе фотосинтеза энергия АТФ и НАДФ-Н2 преобразуется в энергию химических связей глюкозы.
3) Поскольку КПД фотосинтеза не 100%, на всех этапах часть энергии теряется в виде тепла.
2. В ХVII веке голландский учёный ван Гельмонт провёл опыт. Он посадил небольшую иву в кадку с почвой, предварительно взвесив растение и почву, и только поливал её в течение нескольких лет. Спустя 5 лет учёный снова взвесил растение. Его вес увеличился на 63,7 кг, вес почвы уменьшился всего на 0,06 кг. Объясните, за счёт чего произошло увеличение массы растения, какие вещества из внешней среды обеспечили этот прирост.
Увеличение массы растения произошло за счет органических веществ, синтезированных в процессе фотосинтеза. Из внешней среды при этом забирались углекислый газ и вода.
3. В чём состоит значение фотосинтеза в природе? Укажите не менее трёх значений.
1) 1-2% энергии солнечного света превращается в энергию химических связей глюкозы. За счет этой энергии существуют все остальные организмы на Земле (все остальные члены пищевой цепи – травоядные животные, хищные животные, бактерии и грибы).
2) Атмосфера насыщается кислородом. Кислородное дыхание является самым выгодным способом энергетического обмена.
3) Кислородная атмосфера (за счет озонового экрана) защищает живые организмы от губительного ультрафиолетового излучения.
4) Из атмосферы поглощается углекислый газ, который мог бы вызвать парниковый эффект (перегрев Земли).
4. Скорость фотосинтеза зависит от лимитирующих (ограничивающих) факторов, среди которых выделяют свет, концентрацию углекислого газа, температуру. Почему эти факторы являются лимитирующими для реакций фотосинтеза?
Свет необходим для возбуждения хлорофилла, он поставляет энергию для процесса фотосинтеза. Углекислый газ необходим в темновой фазе фотосинтеза, из него синтезируется глюкоза. Изменение температуры ведет к денатурации ферментов, реакции фотосинтеза замедляются.
5. Какой органоид растительной клетки изображен на рисунке? Назовите структуры, обозначенные на рисунке цифрами 1 и 2, укажите их функции.
1) На рисунке изображен хлоропласт.
2) Цифрой 1 обозначен тилакоид, входящий в состав граны (стопки тилакоидов). На мембранах тилакоидов происходит световая фаза фотосинтеза, большое количество тилакоидов увеличивает поверхность для проведения этой реакции.
3) Цифрой 2 обозначена кольцевая ДНК хлоропласта. Она содержит информацию о некоторых белках хлоропласта.
6. Какие продукты световой фазы фотосинтеза используются в темновую фазу, а какие нет?
1) используется водород, полученный при фотолизе воды;
2) используются молекулы АТФ;
3) не используется полученный при фотолизе молекулярный кислород
7. На листьях водных растений видны скопления мелких пузырьков газа. Укажите, какой это газ, в результате какого процесса он образуется и из какого вещества.
1) это кислород;
2) он образовался из воды в процессе световой фазы фотосинтеза
8. Какую роль играют электроны молекул хлорофилла в фотосинтезе?
Электроны хлорофилла, возбужденные солнечным светом, проходят по электронотранспортным цепям и отдают свою энергию на образование АТФ и НАДФ-Н2.
9. Плоды садовой земляники, созревшие в солнечную и пасмурную погоду, отличаются по вкусу. В чем заключается это отличие? Как вы можете объяснить возникновение таких отличий?
1) плоды садовой земляники, созревшие в солнечную погоду, гораздо слаще, чем плоды, созревшие в пасмурную;
2) в солнечную погоду повышается интенсивность фотосинтеза, а тем самым синтез углеводов (глюкозы), имеющих сладкий вкус.
10. Рассмотрите предложенную схему классификации двумембранных органоидов клетки. Запишите в ответе пропущенный термин, обозначенный на схеме вопросительным знаком.
11. В листьях растений интенсивно идет процесс фотосинтеза. Происходит ли он в зрелых и незрелых плодах? Ответ поясните.
1) фотосинтез происходит в незрелых плодах (пока они зеленые), так как в них имеются хлоропласты;
2) по мере созревания хлоропласты превращаются в хромопласты, в которых фотосинтез не происходит.
12. В закрытых и отапливаемых теплицах часто повышают концентрацию углекислого газа. С какой целью производится этот прием?
1) Углекислый газ является сырьем для производства углеводов в процессе фотосинтеза.
2) Увеличение концентрации углекислого газа в теплице приводит к повышению эффективности фотосинтеза и, следовательно, к повышению урожайности растений.
13. Найдите три ошибки в приведённом тексте. Укажите номера предложений, в которых они допущены, объясните их. (1) Клетки зелёных растений, используя энергию солнечного света, способны синтезировать органические вещества. (2) Исходными веществами для фотосинтеза служат углекислый газ и азот атмосферы. (3) Процесс фотосинтеза как в прокариотических, так и в эукариотических клетках происходит в хлоропластах. (4) В световой стадии фотосинтеза происходит синтез АТФ и разложение воды — фотолиз. (5) В темновой стадии фотосинтеза образуются глюкоза и кислород. (6) Энергия АТФ, запасённая в световой стадии, расходуется на синтез углеводов.
2) Атмосферный азот не участвует в процессах фотосинтеза.
3) Только цианобактерии способны к фотосинтезу, остальные прокариоты к нему не способны. (ИЛИ: У фотосинтезирующих цианобактерий в клетках отсутствуют хлоропласты. Остальные прокариоты не фотосинтезируют.)
5) В темновой фазе фотосинтеза кислород не образуется. Этот газ образуется в световой фазе.
На листьях водных растений видны скопления мелких пузырьков газа укажите какой это газ
Интеллектуальный и эстетичный кабинет для подготовки к ЕГЭ
Верный ответ: Волокна; Лубяные волокна
Верный ответ: Искусственный мутагенез
А) являются запасными питательными веществами
Б) являются производными многоатомных спиртов
В) выполняют строительную функцию
Г) состоят из углерода, водорода и кислорода
Д) нерастворимы в воде
Е) состоят из остатков глюкозы
1) жиры
2) полисахариды
3) общие особенности
Верный ответ: 313332
А) рождающийся организм отличается от взрослого
Б) образуется личинка
В) стадия метаморфоза отсутствует
Г) стадия метаморфоза присутствует
Д) рождающийся организм в основном сходен со взрослым
1) непрямой
2) прямой
Верный ответ: 11212
ОСОБЕННОСТИ СТРОЕНИЯ КРОВЕНОСНОЙ СИСТЕМЫ
А) в сердце венозная кровь
Б) из сердца венозная кровь поступает в лёгкие
В) два круга кровообращения
Г) сердце четырёхкамерное
Д) один круг кровообращения
Е) сердце двухкамерное
Верный ответ: 211122
1) луб
2) камбий
3) сердцевина
4) пробка
5) древесина
Верный ответ: 35214
1) лучевую
2) тазовую
3) бедренную
4) подвздошную
5) малую берцовую
6) пяточную
1) врожденный
2) активный
3) пассивный
Верный ответ: 21311
1) голень
2) предплюсна
3) плюсна
4) фаланги пальцев
5) бедро
Верный ответ: 51234
А) у зародыша млекопитающего имеются жаберные щели
Б) филогенетические ряды
В) наличие ископаемых переходных форм
Г) онтогенез рептилии,как и птицы, начинается с зиготы
Д) наличие ископаемых остатков растений
Е) все позвоночные животные в индивидуальном развитии проходят стадии бластулы, гаструлы, нейрулы
1) эмбриологическое
2) палеонтологическое
Верный ответ: 122121
А) слепая кишка короткая или редуцирована
Б) кишечник во много раз длиннее тела
В) развиты резцы
Г) хорошо развиты клыки
Д) кишечник короткий
Е) желудок имеет несколько отделов
1) растительноядные
2) хищники
Верный ответ: 211221
1) колибри
2) гавиал
3) полоз
4) колюшка
5) ланцетник
6) тритон
Верный ответ: 546321
1) только мезодерма
2) только энтодерма
3) нервная трубка
4) образовательная
5) нервная
6) эпителиальная
7) эктодерма, мезодерма и энтодерма
8) покровная
1) Кривая оптимума самая широкая у теплолюбивых видов.
2) У холодолюбивых и теплолюбивых видов животных разные температуры оптимума на температурной шкале.
3) На графике показано, что пределы выносливости наибольшие у видов, выносливых к широкому диапазону колебаний температуры.
Часть 2
Часть 2 Вы проверяете сами. Все пояснения и подсказки к частям 1 и 2 обязательно будут даны по окончании теста.
1) На листьях под водой скапливается кислород
2) Кислород является продуктом светозависимой (световой) фазы фотосинтеза, образуется в ходе фотолиза воды как побочный продукт, после чего удаляется из растения
(1)Вторая группа крови называется группой AB. (2)В эритроцитах крови II группы содержится агглютиноген A. (3)В плазме крови II группы содержится агглютинин α. (4)Кровь II группы можно отдавать людям с группами крови I и II. (5)Людям со II группой крови можно принимать кровь I и II групп.
1) Вторая группа крови обозначается буквой A
3) Плазма крови II группы содержится агглютинин β
4) Кровь II группы можно переливать людям с II и IV группами крови (в настоящее время все переливания крови осуществляются строго в пределах своей группы)
Фотосинтез в аквариуме или почему пузыряют растения
Серебристые кислородные пузырьки на листьях растения это завораживающе фантастическое зрелище, свидетельствующие об активных процессах внутри растения.
Пузыряние это термин, который описывает процесс высвобождения растением пузырьков кислорода. Пузыряние происходит в период освещения и является индикатором наиболее активного периода фотосинтеза у растений.
Если интенсивность освещения увеличить (не путать с длительностью освещения) и одновременно увеличить подачу количества CO2 (углекислого газа), то пузыряние ощутимо усиливается. Чем активнее идет процесс фотосинтеза, тем быстрее выделяются пузырьки кислорода.
При достаточном количестве света у водных растений происходит активный процесс образования органических веществ из диоксида углерода (CO2), воды, минеральных солей азота, фосфора и некоторых других химических элементов. Свет, а точнее, световая энергия это главное условие такого процесса, углекислый газ при этом поглощается, и в результате фотосинтеза растениями активно выделяется кислород.
Фотосинтез растения происходит в листьях и зеленых стеблях, внутри клеточных структур, называемых хлоропластами. Каждый лист содержит в себе десятки тысяч клеток, в каждой из которых имеется от 40 до 50 хлоропластов.
Каждый отдельно взятый хлоропласт разделен мембранами дискообразной формы, которые называются гранами (thylakoid). В мембранах гранов содержатся сотни молекул хлорофилла – улавливающих свет зеленых пигментах, которые активно участвуют в процессе фотосинтеза.
Хлоропласты — это пластиды высших растений, в которых идет процесс фотосинтеза, использование энергии световых лучей для образования из неорганических веществ (углекислого газа и воды) органических веществ, с одновременным выделением кислорода. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм.
Хлоропласты способны перемещаться по клетке. На слабом свету они располагаются под той стенкой клетки, которая больше обращена к свету. При этом хлоропласты обращаются к свету своей большей поверхностью. Если свет слишком интенсивен, они наоборот поворачиваются к нему ребром и выстраиваются вдоль стенок, параллельных лучам света. При средней степени освещенности хлоропласты занимают положение, среднее между двумя крайними, описанными выше. В любом случае, всегда достигается один результат: хлоропласты оказываются в наиболее благоприятных для фотосинтеза условиях освещения.
Помимо хлорофилла в мембранах также присутствуют каротиноиды, желтые, оранжевые, красные или коричневые дополнительные пигменты-модификаторы, которые поглощая определенные участки солнечного спектра, передают энергию этих лучей молекулам хлорофилла. Тем самым, они способствуют использованию тех лучей, которые хлорофиллом не поглощаются. Хлорофилл поглощает красные и синие лучи, тогда как зеленые лучи им в основном отражаются.
Наличие хлорофилла* и картиноидов, улавливающих разные лучи спектра означает, что лист растения обладает возможностью абсорбции света с широким спектром, что в свою очередь, приводит к тому, что фотосинтез выполняется постоянно, даже при меняющемся спектре света.
*Среди пигментов преобладает хлорофилл а. К вспомогательным пигментам относятся хлорофилл b, каротиноиды и др.
Свет состоит из фотонов с различной длиной волны – частотой излучения. В этой таблице волна длиной 650 нанометров содержит самое большое количество фотонов на единицу энергии и наименьшее количество самой энергии.
Некоторые химические реакции, например, могут начаться только при облучении вещества светом, частота которого выше определённого порогового значения; излучение, частота которого ниже этого значения, вне зависимости от интенсивности, не может инициировать такую реакцию.
Если рассматривать видимую часть спектра, то известно, что самые короткие фиолетовые лучи спектра имеют длину 380 нанометров, а самые длинные красные лучи до 750 нанометров.
Итак подробнее о лучах, в большей мере влияющих на растения.
Красные лучи в сочетании с оранжевыми представляют собой основной вид энергии для фотосинтеза. Этот свет очень полно поглощается хлорофиллом и увеличивает образование углеводов при фотосинтезе. Зона красно-оранжевого света имеет решающее значение для всех физиологических процессов в растениях.
Лучи фиолетовые и синие тормозят рост стеблей, листовых черешков и пластинок, тo есть формируют более компактные растения и более толстые листья, позволяющие лучше поглощать и использовать свет в целом. Эти лучи стимулируют образование белков и органический синтез растений. Сине-фиолетовая часть спектра света почти полностью поглощается хлорофиллом, что создаёт условия для максимальной интенсивности фотосинтеза.
Зелёные лучи практически проходят через листовые пластинки, не поглощаясь ими. Последние под их действием становятся очень тонкими, а осевые органы растений вытягиваются. Уровень фотосинтеза – самый низкий. Зеленый свет хлорофиллом отражается, что и придает растениям специфическую зеленую окраску, если она не маскируется другими пигментами
Кроме видимой части свет для растений имеет значение невидимый свет – ультрафиолет (UV), который в свою очередь, делится на короткие (UVC), средние (UVB) и длинные лучи (UVA).
Средние ультрафиолетовые лучи (длиной 280-315 нанометров) действуют наподобие пониженных температур, способствуя процессу закаливания растений и повышая их холодостойкость. На хлорофилл ультрафиолетовые лучи практически не действуют, у растений, перемещённых из темноты на свет (этиолированных*), хлорофилл интенсивно образуется. Длинные ультрафиолетовые лучи (длиной 315-380 нанометров) необходимы для обмена веществ и роста растений. Они так же задерживают вытягивание стеблей и повышают содержание витамина С.
* Этиолированные растения, выросшие при недостатке света или в темноте. Отличаются белой или желтоватой окраской из-за отсутствия зелёного пигмента растений — хлорофилла, сильно вытянутым стеблем, слабым развитием листьев, механических тканей, устьиц.
При прохождении атмосферы лучи рассеиваются незначительно. Однако, при прохождении толщи воды они поглощаются, теряя энергию. Вода неодинаково поглощает световые лучи различных длин волн, т.е. обладает избирательным (селективным) поглощением. Сильнее всего поглощаются красные лучи, потеря энергии на глубине 30 см составляет 50%. При этом потеря энергии синего луча на глубине в 1 метр составляет всего лишь 0,5%.
Но это не значит, что для аквариума нужно выбирать свет с преобладанием синего. Чем краснее цвет, тем ниже цветовая температура, чем синее цвет, тем цветовая температура выше. Цветовая температура измеряется в Кельвинах (К). При цветовой температуре ниже 5000К растения и вода приобретают нездоровый желтый оттенок, а при 10000К растения выглядят неестественно синими. Оптимальной цветовой температурой, при которой растения выглядят наиболее естественно, может считаться цветовая температура от 7000-8000 К.
Упрощенно сам процесс фотосинтеза происходит в два этапа. В первый этап реакция зависит от света. Хлоропласт улавливает энергию фотона и трансформирует ее в химическую энергию, состоящую из двух молекул: НAДФH (восстановленная форма кофермента никотинамидадениндинуклеотид-фосфата) и ATФ (аденозинтрифосфат).
Второй этап это уже независимая от света реакция, когда НАДФ-Н2 отдает атомы водорода для создания глюкозы, при этом АТФ обеспечивает достаточное количество энергии для синтеза глюкозы. При разложении воды образуются кислород и водород. Кислород выделяется в воду, а водород связывается белком ферредоксином. На всех этапах фотосинтеза принимают участие фосфорилированные соединения. АТФ образуется из АДФ путем присоединения к нему еще одного фосфата (Р).
Глюкоза это топливо, которое образуется в процессе фотосинтеза и используется растением для построения листьев, стеблей и т.п. Излишки глюкозы хранятся в корнях, стеблях и листьях растения в качестве резерва. Глюкоза может быть трансформирована в целлюлозу, которая используется в качестве материала для построения клеточной ячеистой структуры.
В АТФ аккумулируется много энергии — она затем используется для синтеза, а также для других нужд клетки. НАДФ-H2 — аккумулятор водорода, причем, легко его отдающий. Следовательно, НАДФ-H2 является химическим восстановителем. Большое число биосинтезов связано именно с восстановлением, и в качестве поставщика водорода в этих реакциях выступает НАДФ-H2. Роль АТФ и восстановленного НАДФ состоит просто в поставке энергии и водорода для темновых реакций.
Множество водных растений, которые сейчас растут в аквариумах, изначально были взяты из природы. В естественных условиях они разрастаются над водой или плавают на поверхности, где, во-первых, освещение более интенсивно, во-вторых, таким образом, они дополнительно получают углекислый газ из атмосферы. Те растения, которые во время своего жизненного цикла постоянно погружены в воду, часто испытывают нехватку диоксида углерода и недостаток освещения, поэтому не могут достигнуть необходимого уровня фотосинтеза, для этого в аквариумах существуют определенные нормы освещения и подачи CO2. При подаче углекислого газа важно учитывать изменение параметров воды, в частности, рН. Наиболее оптимальным для фотосинтеза считается промежуток pH от 6,6 до 7,3, концентрацией CO2 от 25 до 30 ppm.
Некоторые виды растений способны усваивать диоксид углерода через корни из скопившегося на дне ила. Ил может содержать углекислый газ, образующийся в результате разложения органической материи и CO2, выделяющийся в результате жизнедеятельности бактерий.
Особое значение для фотосинтеза водных растений имеют три макроэлемента: азот, фосфор и калий. Потребность растений в этих элементах весьма значительна. После них следуют кальций, магний, сера и железо
Азот (N). В процессе фотосинтеза участвуют многочисленные белки-ферменты, имеющие в своей структуре атомы азота. В этой связи понятно большое значение уровня азотного питания.
Фосфор (P). На всех этапах фотосинтеза принимают участие фосфорилированные соединения. АТФ образуется из АДФ путем присоединения к нему еще одного фосфата. Этот процесс носит название фосфорилирования и требует затраты энергии, поэтому значение фосфора в процессе фотосинтеза велико. Энергия света аккумулируется в фосфорных связях. При дефиците фосфора нарушаются фотохимические и темновые* реакции фотосинтеза
* Темновые, а в некоторой степени и световые реакции контролируются ферментами, поэтому температура воды имеет большое значение. Для наиболее благоприятной температурой является температура примерно 26 °С. При повышении температуры на каждые 10 °С скорость реакции удваивается, (вплоть до 35 °С), однако есть данные, свидетельствующие, что при 26 С растение развивается лучше.
Калий (K). На свету в замыкающих клетках интенсивно накапливаются катионы калия и сопутствующие им анионы, которые отвечают за ускорение оттока ассимилятов из листьев, увеличение степени открытия устьиц закрытия устьиц (пор листа, через которые происходит газообмен диоксида углерода на кислород в процессе фотосинтеза, а так же водообмен и получение питательных элементов). Глюкоза, которая производится в результате фотосинтеза, должна транспортироваться ко всем частям растения для использования или хранения. Для этого необходима энергия АТФ. Если калия недостаточно, образуется меньше АТФ и транспортировка замедляется, интенсивность фотосинтеза снижается. При недостатке калия интенсивность фотосинтеза снижается очень быстро. При интенсивном газообмене в процессе фотосинтеза кислород образует пузырьки, которые и обозначаются термином пузыряние.
Магний (Mg) и кальций (Ca). Процессы фотофосфорилирования требуют также обязательного присутствия магния. В состав молекулы хлорофилла входит плоская голова, поглощающая свет, в центре которой расположен атом магния. Этим можно объяснить, почему растения нуждаются в магнии, и почему дефицит магния приводит к уменьшению образования хлорофилла и пожелтению листьев растения. Относительное увеличение содержания магния приводит к усиленному накоплению хлорофиллов по сравнению с каротиноидами. Противоположное влияние оказывает увеличение содержания кальция.
Железо (Fe). Другой пример, это хлорофилл – улавливающие свет пигменты, при недостатке железа листья растения желтеют, поскольку недостаточно вырабатывается зеленого пигмента хлорофилла и фотосинтез существенно замедляется.
Потребность в других химических элементах проявляется в гораздо меньшей степени потребления их водными растениями, поэтому их называют микроэлементами. Среди микроэлементов находятся: хлор, медь, марганец, цинк, молибден, бор.
Марганец (Mn). Отсутствие марганца резко угнетает реакцию Хилла и процесс нециклического фотофосфорилирования в процессе фотосинтеза. Все это значит, что роль марганца определяется его участием в реакциях фотоокисления воды (разложение воды на кислород, электроны и протоны). В естественных условиях фотоокисление воды производится при участии комплекса протеинов, получившего название «фотосистема II», в который входят энзимы, содержащие марганец (они и служат катализаторами).
Для пополнения питательных веществ в воде изготавливаются жидкие и прикорневые удобрения, содержащие макро и микроэлементы в разных пропорциях, дозировка и применение таких удобрений желательно рассчитывать исходя из каждого конкретного случая и параметров воды.
Все эти процессы необходимая часть жизненного цикла и роста растений, увеличение интенсивности освещения и содержания углекислого газа в воде пропорционально увеличивает активность фотосинтеза и потребность растения в питательных элементах.
При наличии всех обязательных условий для фотосинтеза происходит быстрый рост растения и усиливается его жизнеспособность.
Интенсивный фотосинтез это именно то, что отличает здоровое аквариумное растение от того, которое всего лишь выживает в аквариуме
Понимание основ фотосинтеза и представление о том, как это работает – это ключ к успеху, чтобы легко создавать оптимальные условий для активного роста красивых водных растений в аквариуме и эффектного пузыряния.
Специально для AQA.ru,
Button
В статье использовались следующие материалы и фотографии: