найдите при каком значении координаты прямая будет перпендикулярна прямой если координаты точек
Решение задач «Решить 2 задания без решения за час»,
Линейная алгебра
Решить 2 задания без решения за час
Закажите подобную или любую другую работу недорого
Вы работаете с экспертами напрямую,
не переплачивая посредникам, поэтому
наши цены в 2-3 раза ниже
Последние размещенные задания
Срок сдачи к 12 нояб.
Решение задач, Криминология
Срок сдачи к 5 нояб.
Срок сдачи к 19 нояб.
Решение задач, Международное частное право
Срок сдачи к 11 нояб.
Коррекция мнемической деятельности младших школьников с ЗПР
Срок сдачи к 20 нояб.
Решение задач, патологическая физиология
Срок сдачи к 10 нояб.
Анализ и расшифровка схемы
Срок сдачи к 19 нояб.
ответить на вопросы и практические задания
Другое, Тайм менеджмент
Срок сдачи к 15 нояб.
Решить задание 1 и задание 2
Срок сдачи к 9 нояб.
выполнить две лабораторные работы
Контрольная, Информационные технологии в строительстве
Срок сдачи к 7 нояб.
Решить 2 ргр вариант 20
Контрольная, механика грунтов
Срок сдачи к 9 нояб.
Контрольная, Бухгалтерский учет
Срок сдачи к 19 нояб.
Структура и функционирование системДа
Контрольная, Основы системного анализа
Срок сдачи к 5 нояб.
Доработать: Оптимизация мер ведения беременности и родов у женщин с дисплазией соединительной ткани
Срок сдачи к 7 нояб.
Курсовая, Управление конкурентоспособностью, управление персоналом, менеджмент, экономика
Срок сдачи к 26 нояб.
дополнительный 4 вопрос: Примеры иллюстрирующие разговор между Рыжовой.
Доклад, межкультурная коммуникация, деловой этикет
Срок сдачи к 6 нояб.
Стимулирования персонала на примере мфц г. москвы
Реферат, Управление персоналом
Срок сдачи к 10 нояб.
Составить заявку на выдачу патента на изобретение или полезную модель
Срок сдачи к 8 нояб.
обратились к нам
за последний год
работают с нашим сервисом
заданий и консультаций
заданий и консультаций
выполнено и сдано
за прошедший год
Сайт бесплатно разошлёт задание экспертам.
А эксперты предложат цены. Это удобнее, чем
искать кого-то в Интернете
Отклик экспертов с первых минут
С нами работают более 15 000 проверенных экспертов с высшим образованием. Вы можете выбрать исполнителя уже через 15 минут после публикации заказа. Срок исполнения — от 1 часа
Цены ниже в 2-3 раза
Вы работаете с экспертами напрямую, поэтому цены
ниже, чем в агентствах
Доработки и консультации
– бесплатны
Доработки и консультации в рамках задания бесплатны
и выполняются в максимально короткие сроки
Гарантия возврата денег
Если эксперт не справится — мы вернем 100% стоимости
На связи 7 дней в неделю
Вы всегда можете к нам обратиться — и в выходные,
и в праздники
Эксперт получил деньги за заказ, а работу не выполнил?
Только не у нас!
Деньги хранятся на вашем балансе во время работы
над заданием и гарантийного срока
Гарантия возврата денег
В случае, если что-то пойдет не так, мы гарантируем
возврат полной уплаченой суммы
С вами будут работать лучшие эксперты.
Они знают и понимают, как важно доводить
работу до конца
С нами с 2017
года
Помог студентам: 10 829 Сдано работ: 10 829
Рейтинг: 80 522
Среднее 4,94 из 5
С нами с 2018
года
Помог студентам: 7 491 Сдано работ: 7 491
Рейтинг: 66 901
Среднее 4,87 из 5
С нами с 2019
года
Помог студентам: 2 368 Сдано работ: 2 368
Рейтинг: 25 249
Среднее 4,84 из 5
С нами с 2018
года
Помог студентам: 2 044 Сдано работ: 2 044
Рейтинг: 12 541
Среднее 4,87 из 5
1. Сколько стоит помощь?
Цена, как известно, зависит от объёма, сложности и срочности. Особенностью «Всё сдал!» является то, что все заказчики работают со экспертами напрямую (без посредников). Поэтому цены в 2-3 раза ниже.
Специалистам под силу выполнить как срочный заказ, так и сложный, требующий существенных временных затрат. Для каждой работы определяются оптимальные сроки. Например, помощь с курсовой работой – 5-7 дней. Сообщите нам ваши сроки, и мы выполним работу не позднее указанной даты. P.S.: наши эксперты всегда стараются выполнить работу раньше срока.
3. Выполняете ли вы срочные заказы?
Да, у нас большой опыт выполнения срочных заказов.
4. Если потребуется доработка или дополнительная консультация, это бесплатно?
Да, доработки и консультации в рамках заказа бесплатны, и выполняются в максимально короткие сроки.
5. Я разместил заказ. Могу ли я не платить, если меня не устроит стоимость?
6. Каким способом можно произвести оплату?
Работу можно оплатить множеством способом: картой Visa / MasterCard, с баланса мобильного, в терминале, в салонах Евросеть / Связной, через Сбербанк и т.д.
7. Предоставляете ли вы гарантии на услуги?
На все виды услуг мы даем гарантию. Если эксперт не справится — мы вернём 100% суммы.
8. Какой у вас режим работы?
Мы принимаем заявки 7 дней в неделю, 24 часа в сутки.
Нахождение вектора, перпендикулярного данному вектору, примеры и решения
Данная статья раскрывает смысл перпендикулярности двух векторов на плоскости в трехмерном пространстве и нахождение координат вектора, перпендикулярному одному или целой паре векторов. Тема применима для задач, связанных с уравнениями прямых и плоскостей.
Мы рассмотрим необходимое и достаточное условие перпендикулярности двух векторов, решим по методу нахождения вектора, перпендикулярному заданному, затронем ситуации по отысканию вектора, который перпендикулярен двум векторам.
Необходимое и достаточное условие перпендикулярности двух векторов
Применим правило о перпендикулярных векторах на плоскости и в трехмерном пространстве.
При условии значения угла между двумя ненулевыми векторами равным 90 ° ( π 2 радиан) называют перпендикулярными.
Что это значит, и в каких ситуациях необходимо знать про их перпендикулярность?
Установление перпендикулярности возможно через чертеж. При отложении вектора на плоскости от заданных точек можно геометрически измерить угол между ними. Перпендикулярность векторов если и будет установлена, то не совсем точно. Чаще всего данные задачи не позволяют делать это при помощи транспортира, поэтому данный метод применим только в случае, когда ничего больше о векторах неизвестно.
Большинство случаев доказательства перпендикулярности двух ненулевых векторов на плоскости или в пространстве производится с помощью необходимого и достаточного условия перпендикулярности двух векторов.
Вторая часть доказательства
Условие перпендикулярности на координатной плоскости
Применим на практике и рассмотрим на примерах.
Для решения данной задачи необходимо найти скалярное произведение. Если по условию оно будет равным нулю, значит, они перпендикулярны.
Ответ: да, заданные векторы a → и b → перпендикулярны.
Используем условие перпендикулярности двух векторов в пространстве в квадратной форме, тогда получим
Имеются случаи, когда вопрос о перпендикулярности невозможен даже при необходимом и достаточном условии. При известных данных о трех сторонах треугольника на двух векторах, возможно, найти угол между векторами и проверить его.
Нахождение вектора, перпендикулярного данному
Важно научиться находить координаты вектора, перпендикулярного заданному. Это возможно как на плоскости, так и в пространстве при условии перпендикулярности векторов.
Нахождение вектора, перпендикулярного данному в плоскости.
Ненулевой вектор a → может иметь бесконечное количество перпендикулярных векторов на плоскости. Изобразим это на координатной прямой.
Рассмотрим доказательство на примере.
Нахождение координат вектора, перпендикулярного двум заданным векторам
При решении применяется понятие векторного произведения векторов.
Разберем подробнее векторное произведение на примере задачи.
Для решения необходимо найти векторное произведение векторов. (Необходимо обратиться к пункту вычисления определителя матрицы для нахождения вектора). Получим :
Как найти координаты точки?
3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ
Понятие системы координат
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.
Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.
Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.
Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.
Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.
Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.
Оси координат делят плоскость на четыре угла — четыре координатные четверти.
У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:
Определение координат точки
Каждой точке координатной плоскости соответствуют две координаты.
Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.
Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.
Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.
Смотрим на график и фиксируем: A (1; 2) и B (2; 3).
Особые случаи расположения точек
В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:
Способы нахождения точки по её координатам
Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.
Способ первый. Как определить положение точки D по её координатам (-4, 2):
Способ второй. Как определить положение точки D (-4, 2):
Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:
Ответы на все модули (для контрольного теста) по предмету математика
Ответы на все модули (для контрольного теста) по предмету математика.
Ответы на модуль 1 (ЧИСЛА) по предмету математика.
10000
6) Какое из перечисленных чисел является иррациональным?
3,141592…
6*5/21
8) Какая из перечисленных дробей является смешанной периодической дробью?
2,75(12)
13) Какие числа называются целыми?
натуральные числа, числа противоположные натуральным, и число 0
Ответы на модуль 2 (ВЕКТОРНАЯ АЛГЕБРА) по предмету математика.
4) Что называется скалярным произведением двух векторов?
9) Какие векторы называются коллинеарными?
лежащие на одной прямой или параллельных прямых
10) Векторы называются компланарными, если
они лежат в одной плоскости или параллельных плоскостях
13) Векторы AC=a и BD=d служат диагоналями параллелограмма ABCD. Выразите вектор DA через векторы a и b
Ответы на модуль 3 (АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ) по предмету математика.
2) Найдите уравнение прямой, проходящей через точку пересечения прямых 2x + 3y — 8 = 0 и x — 4y + 5 = 0 и через точку M1(-2; 3)
5x+ 13y— 29 = 0
прямые перпендикулярны
10) Уравнение 3x— 4y+ 12 = 0 преобразуйте к уравнению в отрезках
11) Определите уравнение прямой, отсекающей на оси Oy отрезок b = 2 и составляющей с осью Ox угол j= 45°
12) Найдите координаты точки пересечения прямых 2x—y— 3 = 0 и 4x+ 3y— 11 = 0
13) Найдите уравнение прямой, проходящей через точки M1(3; 2), M2(4;-1)
Ответы на модуль 4 (КРИВАЯ 2-ГО ПОРЯДКА) по предмету математика.
1) Определите эксцентриситет равносторонней гиперболы
2) Укажите уравнение окружности, которая проходит через точки А(3;1) и В(-1; 3), а ее центр лежит на прямой 3x—y— 2 = 0
(x— 2) 2 + (y— 4) 2 = 10
3) Укажите уравнение окружности радиуса R= 8 с центром в точке C(2;-5)
(x— 2) 2 + (y+ 5) 2 = 8 2
5) Укажите уравнение окружности, центр которой совпадает с началом координат, а прямая 3x— 4y+ 20 = 0 является касательной к окружности
x 2 +y 2 = 16
6) Укажите уравнение окружности, которая проходит через точку А(2;6) и ее центр совпадает с точкой C(-1; 2)
(x+ 1) 2 + (y— 2) 2 = 25
7) Укажите каноническое уравнение эллипса, расстояние между фокусами которого равно 8, а малая полуось b= 3
8) Напишите уравнение эллипса, если даны его полуоси a= 5 и b= 4
(x— 1) 2 + (y+ 3) 2 = 73
10) Определите полуоси гиперболы 25x 2 — 16y 2 =1
11) Напишите уравнение гиперболы, фокусы которой лежат на оси Ox, если даны a= 6 и b= 2
12) Укажите уравнение параболы, с вершиной в точке O и фокусом F(4; 0)
13) Укажите уравнение окружности, для которой точки А(3; 2) и В(-1; 6) являются концами одного из диаметров
(x— 1) 2 + (y— 4) 2 = 8
Ответы на модуль 5 (КРИВАЯ 2-ГО ПОРЯДКА) по предмету математика.
2. 1-я строка, 2-я строка
9) Определитель системы трех линейных уравнений с тремя неизвестными равен 5. Это означает, что
система имеет единственное решений
11) Метод Гаусса решения системы линейных уравнений предполагает использование
последовательного исключения неизвестных
12) Система линейных уравнений называется совместной, если
она имеет хотя бы одно решение
Ответы на модуль 6 (МАТЕМАТИЧЕСКИЙ АНАЛИЗ) по предмету математика.
e — 5
Ответы на модуль 7 (ДИФФЕРЕНЦИРОВАНИЕ) по предмету математика.
2) Найдите производную функции f(x)=(1+ cos x)sin x
cos x+ cos 2x
5) Найдите производную функции y= sin(2x 2 + 3)
4xcos(2x 2 + 3)
6) Найдите производную функции y=(3e x +x)× cos x
(3e x + 1) × cos x— (3e x +x) × sin x
9) Найдите производную функции y=2 tg x
11) Найдите скорость тела, движущего по закону S=3t-5
13) Найдите производную функции y=xe x —e x
xe x
Ответы на модуль 8 (ИССЛЕДОВАНИЕ ФУНКЦИИ С ПОМОЩЬЮ ПРОИЗВОДНОЙ) по предмету математика.
1) Число f(x0) называется наибольшим значением функции на отрезке [a;b], если
для всех x из этого отрезка выполняется неравенство f(x) 2 — 3x+ 1
убывает при x 3/2
3) Найдите точки максимума (минимума) функции y=- 5x 2 — 2x+ 2
(-0,2;2,2) точка максимума
4) Каково необходимое условие возрастания функции?
если функция y=f(x) дифференцируема и возрастает на интервале (a;b), то f(x)>=0 для всех xиз этого интервала
5) Определите поведение функции y= 2x 2 при x= 1
возрастает
6) В каких точках выпукла или вогнута кривая y=x 2 — 3x+ 6
вогнута во всех точках
7) Найдите промежутки возрастания или убывания функции y=- 2x 2 + 8x— 1
9) Найдите точки перегиба кривой y=x 4 — 12x 3 + 48x 2 — 50
(2; 62) и (4; 206)
10) Найдите точки максимума (минимума) функции y=x 2 — 2x
(1;-1) точка минимума
12) Найдите наибольшее и наименьшее значения функции y=x 2 на промежутке [-1; 3]
13) В каких точках выпукла или вогнута кривая y= 2 — 3x—x 2
выпукла во всех точках
Ответы на модуль 9 (ФУНКЦИЯ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ) по предмету математика.
2) Найдите частные производные второго порядка функции z=x 3 y 4 +ycos x
5) Найдите частные производные функции двух переменных z=xe y +ye x
6) Найдите частные производные функции z=x 2 × ln y
7) Найдите полный дифференциал функции z=x 2 y+xy 2
8) Какая поверхность называется графиком функции n переменных?
9) Укажите полное приращение функции f(x;y)
11) Укажите частное приращение функции f(x;y)по переменной у
xy 2 не =y 2
Ответы на модуль 10 (НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ) по предмету математика.
Ответы на модуль 11 (ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ И ЕГО ГЕОМЕТРИЧЕСКИЕ ПРИЛОЖЕНИЯ) по предмету математика.
48 м
3) Сила в 6 кГ растягивает пружину на 8 см. Какую работу она производит?
0,24 кГм
6) Найдите площадь фигуры, заключенной между прямыми y=4x— 5, x=-3, x=-2 и осью Ox
7) Скорость падающего в пустоте тела определяется по формуле v= 9,8t м/сек. Какой путь пройдет тело за первые 10 секунд падения?
490 м
8) Найдите площадь фигуры, ограниченной прямыми y=5x, x=2 и осью Ox
Ответы на модуль 12 (ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ) по предмету математика.
1) Как называется решение, полученное из общего при конкретных значениях произвольных постоянных?
частным решением
2) Найдите общее решение уравнения (x+y)dx+xdy=0
при решении однородных уравнений
4) Найдите общее решение уравнения xy 2 dy=(x 3 +y 3 )dx
5) Среди перечисленных дифференциальных уравнений укажите уравнение Бернулли
6) Найдите общее решение уравнения y — 9y = e 2 x
8) Найдите частное решение уравнения ds=(4t-3)dt, если при t= 0 s= 0
9) Найдите общее решение уравнения y—y= 0
11) Среди перечисленных дифференциальных уравнений укажите однородное уравнение
12) Найдите общее решение уравнения y— 4y+ 3y= 0
13) Найдите общее решение уравнения y = cos x
Ответы на модуль 13 (РЯДЫ) по предмету математика.
сходится
2) Найдите интервал сходимости ряда x+2x 2 +3x 3 +4x 4 +…+nx n +…, не исследуя концов интервала
4) Разложите в степенной ряд f(x)= arctg 3x
расходится
сходится
расходится
расходится
сходится
11) Разложите в степенной ряд f(x)= sin 2x
расходится
сходится
Ответы на задачник по предмету математика.
x — y + 3z — 11 = 0
2) Вычислить определитель D, разложив его по элементам второго столбца.
3) Вычислить J= ∫cos(lnx) dx/x
sin(lnx)+ C
4) Найти lim x—>0 (5 x — cos x)
6) Найти производную функции y =ln sinx
ctg x
7) Найдите угол между векторами a = 2m+4n и b = m-n, где m и n — единичные векторы и угол между m и n равен 120 о
8) Найти наименьшее значение функции y = x 2 – 6x + 5 на отрезке (1,2).
X1=2, X2=3, X3=-2.
10) При каком положительном значении параметра t прямые, заданные уравнениями
3tx — 8y + 1 = 0 и (1+t)x — 2ty = 0, параллельны?