длина волны 660 нм какой цвет

Статьи. 31 Конвертация длин световых волн в RGB

ВНИМАНИЕ! При цитировании и разработке размещенного на странице материала ссылка на автора обязательна

Статья 31. КОНВЕРТАЦИЯ ДЛИН СВЕТОВЫХ ВОЛН В ЗНАЧЕНИЯ RGB
Опубликовано 27 февраля 2018 г. Свидетельство о публикации № 218022701409

Конвертация длин световой волны в значения системы RGB имеет следующий вид:
Пурпурный цвет 400-422 нм, 750-794 ТГц; RGB (255; 0; 255), угол цветового тона 300 град, название тона в RGB – цвет маджента;
Фиолетовый цвет 423-444 нм, 710-749 ТГц; RGB (127,5; 0; 255), угол цветового тона 270 град, название тона в RGB – фиолетово-сизый цвет;
Синий цвет 445-467 нм, 673-709 ТГц; RGB (0; 0; 255), угол цветового тона 240 град, название тона в RGB – синий цвет;
Лазурный (небесно-голубой) цвет 468- 490 нм, 641-672 ТГц; RGB (0; 127,5; 255), угол цветового тона 210 град, название тона в RGB – лазурный цвет;
Циановый (морской волны) цвет 491-513 нм, 611-640 ТГц; RGB (0; 255; 255), угол цветового тона 180 град, название тона в RGB – циановый цвет;
Весенне-зеленый цвет 514-535 нм, 584-610 ТГц; RGB (0; 255; 127,5), угол цветового тона 150 град, название тона в RGB – весенне-зеленый цвет;
Зеленый цвет 536-558 нм, 559-583 ТГц; RGB (0; 255; 0), угол цветового тона 120 град, название тона в RGB – зеленый лаймовый цвет;
Желто-зеленый цвет 559-581 нм, 537-558 ТГц; RGB (127,5; 255; 0), угол цветового тона 90 град, название тона в RGB – цвет шартрез;
Желтый цвет 582-604 нм, 516-536 ТГц; RGB (255; 255; 0), угол цветового тона 60 град, название тона в RGB – желтый цвет;
Оранжевый цвет 605-626 нм, 496-515 ТГц; RGB (255; 127,5; 0), угол цветового тона 30 град, название тона в RGB – темно-янтарный цвет;
Красный цвет 627-649 нм, 478-495 ТГц; RGB (255; 0; 0), угол цветового тона 0 (360) град, название тона в RGB – цвет
Розовый цвет 650-672 нм, 462-477 ТГц; RGB (255; 0; 127,5), угол цветового тона 330 град, название тона в RGB – глубокий розовый цвет.

Подробно расчет совершенного темперированного спектра видимого света и его сопоставление с круговой диаграммой RGB представлен в работе «Расчет совершенного темперированного спектра видимого света» (с учетом погрешностей метода), расположенной по адресу:

Совершенный темперированный световой спектр – это разделенный на 12 равных частей световой спектр видимого света, принятый за один полный цикл (360 град) в диапазоне длин световых волн от 400 нм до 672, 7273 нм включительно. Спектр совершенного темперированного спектра видимого света – это простое и равномерное чередование 12 цветовых полутонов в пределах цикла цветов видимого света. Эта калибровка спектра также лежит в основе рассматриваемой конвертации (перевода) цветов спектра видимого света по шкале значений длины волны в цвета по шкале RGB, принятой в современной колористике. Заметим, что значения длин волн цветов спектра видимого света легко конвертируются в значения этих цветов по системе RGB, но далеко не все значения цветов в системе RGB можно перевести в значения соответствующих им длин волн.

Расчет совершенного темперированного спектра видимого света и конвертация его в систему RGB проводится в 5 этапов:
1) Качественное определение границ спектрального цикла: спектральный цикл состоит из 12 цветовых тонов, нижней (согласно длине волны) границей которого является начало зоны пурпурного цвета, а его верхней границей является окончание зоны розового цвета.

2) Количественное определение границ спектрального цикла: границы спектрального цикла видимого света определяются значениями от 400 нм (начало зоны пурпурного цвета) до 672,724 нм, а диапазон длин световых волн от 400 нм до 672,724 нм рассматривается как цикл совершенного темперированного спектра видимого света.

3-4) Расчет диапазонов (отрезков значений длины волны и частоты), соответствующих каждому из 12 цветовых полутонов в совершенном темперированном спектре видимого света:

Пурпурный цвет 400-422 нм, 750-794 ТГц;
Фиолетовый цвет 423-444 нм, 710-749 ТГц;
Синий цвет 445-467 нм, 673-709 ТГц;
Лазурный (небесно-голубой) цвет 468- 490 нм, 641-672 ТГц;
Циановый (морской волны) цвет 491-513 нм, 611-640 ТГц;
Весенне-зеленый цвет 514-535 нм, 584-610 ТГц;
Зеленый цвет 536-558 нм, 559-583 ТГц;
Желто-зеленый цвет 559-581 нм, 537-558 ТГц;
Желтый цвет 582-604 нм, 516-536 ТГц;
Оранжевый цвет 605-626 нм, 496-515 ТГц;
Красный цвет 627-649 нм, 478-495 ТГц;
Розовый цвет 650-672 нм, 462-477 ТГц.

При этом расчете важны следующие замечания:
1) Хотя Исаак Ньютон и начал работу по созданию теории света (1666 г.), но он условно и с научной точки зрения произвольно (отчасти в угоду эзотерическим представлениям о семеричном построении Вселенной, мировой гармонии и Солнечной системы) разделил спектр на 7 цветов. Иоганн Вольфганг фон Гете, хотя и был в отличие от Ньютона больше художником, чем ученым, но верно определил цикл светового спектра (1810 г.), разделив его на 6 частей и включив в него пурпурный цвет как промежуточный между фиолетовым и красным цветами, а также справедливо заключил, что каждый полутон в цветовом круге является результатом сложения двух граничащих с ним с разных сторон полутонов. Далее Джеймс Клерк Максвелл предложил аддитивную систему цвета RGB (1860 г.), которая в наши дни хорошо разработана и широко применяется во всех областях, где работают с цветом (от дизайна одежды и косметики до компьютеров). Также цветовая система RGB использована и нами для цветового описания цикла совершенного темперированного спектра видимого света в тэлиотитологии (науки о совершенстве и циклах).

3) При сочетании совершенного темперированного спектра цветов видимого света и совершенного темперированного музыкального строя – систем, в которых световой и музыкальный циклы (соответственно) условно разделены на 12 хроматических ступеней, можно получить представление о соответствиях между цветовыми и музыкальными полутонами соответствующих рядов. Между ступенями гаммы (рассматривается совершенный темперированный строй) и тонами спектра существует линейное соответствие:

Выводы:
1) В спектре видимого света не семь основных цветов, а 6: розовый, оранжевый, желто-зеленый, весенне-зеленый (изумрудный), лазурный, фиолетовый.

2) В дополнение к основным тонам и на их основе рассматривается еще 6 цветов этого цикла: красный, желтый, зеленый, цвет морской волны, синий, пурпурный, которые являются «диезными» тонами к основным цветам спектра. Таким образом образуются пары в ряду 12 цветовых полутонов: Эти пары соответствуют музыкальным тонам в звуковом цикле гаммы лишенного звука «си» совершенного темперированного строя: (до-до диез)-(ре-ре диез)-(ми-ми диез)-(фа-фа диез)-(соль-соль диез)-(ля-ля диез).

3) На основе шести основных тонов цветового цикла образуются 12 полутонов этого цикла: розовый, [красный], оранжевый, [желтый], желто-зеленый, [зеленый], весенне-зеленый, [цвет морской волны], лазурный, [синий], фиолетовый, [цвет маджента]. Соответствие между звуками гаммы и цветами спектра прямое. Здесь в квадратных скобках обозначены «диезные тона» основных цветов.

На рисунке: спектр цветов видимого света с калибровкой длины волны в нм и калибровкой цветовых параметров по системе RGB.

Источник

Длина волны 660 нм какой цвет

Ежедневно на протяжении всей своей жизни мы неразрывно связаны со светом, что оказывает влияние не только на наше зрительное восприятие окружающего мира, но и на здоровье, самочувствие, продуктивность и настроение.

С давних времен по своей природе человек с восходом солнца просыпается, когда солнце находится в своём пике – работает, а с наступлением ночи готовится ко сну. Это не случайно и взаимосвязано со светом. Каким образом? Для этого необходимо рассмотреть характеристики света

Световое излучение характеризуется такими параметрами, как световой поток, сила света, яркость, освещенность и др., но подробней хотелось бы остановиться на спектральных характеристиках и их взаимосвязи с природой.

Свет – это видимая область электромагнитного излучения в диапазоне длин волн от 380 нм до 780 нм. Именно в этом диапазоне оптическое излучение способно возбуждать сетчатку глаза человека и создавать зрительный образ.

Помимо видимой области излучения в светотехнике рассматривают также ультрафиолетовое (длина волны от 1 нм до 380 нм) и инфракрасное излучение (длина волны от 780 нм до 1 мк).

Видимое излучение с разной длиной волны воспринимаются глазом как разные цвета:

Таблица 1. Длины волн различных цветов

Длина волны

от 380 нм до 450 нм

от 450 нм до 480 нм

Границы цветов приблизительны – разные люди отличаются друг от друга восприятием цветовых сигналов головным мозгом. Для нас же самым наглядным примером видимого спектра в природе является радуга.

Полный видимый спектр на шкале излучений различных длин волн выглядит так:

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

Белый свет является смешением всех (или нескольких) цветов спектра в определенной пропорции. Если луч белого света пропустить через стеклянную призму, то он разложится на спектр (явление дисперсии света).

Различные цвета мы видим каждый день и не придаём значения тому, что это очень сложный процесс восприятия. Цвет предмета определяется спектральным составом света и спектральными характеристиками отражения и пропускания материалов.

Цвет – это объективная величина, которая может быть измерена и выражена конкретными параметрами. Для этого чаще всего используют колориметрическую систему координат цветности:

На рис. 3 представлено поле реальных цветов. На ограничивающей его кривой линии отмечены длины волн монохроматических излучений, воспринимаемых глазом – от 380 (фиолетовый цвет) до 700 (красный цвет) нм.

Средняя часть цветового поля – это область белых цветов. В ней проходит линия – кривая теплового излучения, то есть кривая координат цветности белого света.

Цветность белого света зависит от цветовой температуры – температуры чёрного тела, при которой оно испускает излучение того же цветового фона, что и рассматриваемое излучение. Цветовая температура измеряется в градусах Кельвина.

Цвет излучения тепловых источников света (ламп накаливания) очень точно соответствует данной кривой на графике.

На рис. 4 представлено наглядное сравнение источников света с различной цветовой температурой.

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

Многие ошибаются, полагая, что чем выше цветовая температура, тем свет «теплее», чем ниже – «холоднее». Ассоциация происходит с температурой тела и воздуха, когда при повышении температуры становится теплее.

В случае цветовой температуры света можно провести аналогию с цветом звёзд.

Цвет звезды зависит от температуры на поверхности: чем больше тепла звезда излучает, тем более голубой цвет она имеет, и наоборот, самые холодные звёзды по температуре на поверхности имеют оранжевый и красный цвет. Как видно из рис. 5, самые горячие небесные тела – голубые звёзды с температурой 30000 К, самые холодные звёзды – красные с температурой 3500 К, солнце в середине дня имеет температуру на поверхности 6000 К и желто-белый цвет.

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

2. Влияние цветовой температуры источников света на человека

В современном мире большая часть нашего активного времени суток проходит на рабочем месте, т.е. под воздействием искусственного освещения. Качество света и его достаточное количество – важная составляющая верного восприятия окружающего мира. Формы объектов, цвета, люди, предполагаемые опасности распознаются нами, если обеспечивается достаточные уровень освещенности, время воздействия света и его цветность. Наравне с визуальными эффектами, цветность влияет также и на другие сферы жизни человека.

С конца 20-го века было проведено большое количество исследований незрительного воздействия света на организм. Оказалось, что в глазах человека имеются не только известные рецепторы – колбочки и палочки, воспроизводящие изображения предметов, но и фоторецепторы, воспринимающие свет без образования изображения – меланопсин. Эти рецепторы отвечают за выработку гормона мелатонина, кортизола, регулируя циркадные ритмы человека.

Гормон мелатонин отвечает за отдых и расслабление организма и работает в партнерстве с другими гормонами (кортизол, серотонин, допамин). В течение дня кортизол обеспечивает бодрость и стрессовую реакцию организма, серотонин контролирует импульс и углеводную потребность, а допамин обеспечивает хорошее настроение, удовольствие, бдительность и координацию.

Высокий уровень мелатонина является причиной сонливости, но он может быть урегулирован воздействием на другие гормоны. Т.к. в течение рабочего дня регулировать уровень естественного освещения сложно, то оказывать влияние на эти четыре гормона, следовательно, и на циркадные ритмы, можно благодаря правильному выбору цветовой температуры источников искусственного освещения.

Воздействие на циркадные ритмы человека происходит за счет изменения уровня освещенности и цветовой температуры в определенные фазы суток. Например, синяя спектральная составляющая подавляет мелатонин и активизирует кортизол, что подходит для середины дня, обеспечивая высокую работоспособность человека, умственную и физическую активность. Излучения в желтом спектре подходят для утра и вечера, когда организм расслабляется и восполняет жизненные силы. Таким образом, изменяя цветовую температуру можно напрямую влиять на самочувствие человека, его настроение и работоспособность в течении дня, не нарушая жизненных циклов.

3. Практическое применение различной цветовой температуры в искусственном освещении

В настоящее время стало возможным применить на практике знания, что освещение в теплом спектре активизирует гормоны отдыха и действует расслабляюще на организм, освещение в нейтрально белом цвете обеспечивает комфортное выполнение текущих задач, а освещение в холодном спектре способствует умственной активности.

Для этого можно обеспечить биологически и эмоционально эффективное освещение двумя способами:

Например, для стандартного рабочего времени подходит цветовая температура источников света равная 4000 К.

Для совещаний и важных переговоров необходима цветовая температура в 5000 К. За счёт более холодной цветовой температуры активизируется выработка гормона кортизола, что приводит к улучшению мозговой деятельности и концентрации.

Но в течение рабочего дня человеку необходим ещё и отдых для восстановления сил. Для этой цели в помещениях отдыха обеспечивают цветовую температуру источников света 3000 К.

В основе данного метода лежит зависимость естественного солнечного цикла от цветовой температуры излучения и зависимость человека от солнечного цикла. Если понаблюдать за солнцем в течение дня, то можно увидеть следующую картину:

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

Как известно, человек ориентируется во времени по естественному освещению (смена дня и ночи), и что свет имеет влияние на человеческие биоритмы.

Утром, при восходе солнца (при теплой цветовой температуре) начинает снижаться выработка мелатонина, и организм пробуждается. Днём (при переходе от нейтральной цветовой температуры к холодной) при выработке кортизола повышается работоспособность. Вечером (при тёплой цветовой температуре) выработка кортизола уменьшается, мелатонина – увеличивается, организм входит в состояние покоя и готовится ко сну. Сохранить гармоничный для организма человека цикл цветовой температуры в искусственном освещении можно, организовав запрограммированное изменение цветовой температуры источников света.

Таблица 2. Зависимость организма от цветовой температуры источников света

Цветовая температура

Что происходит

Эффект

2700 – 3000 К, тёплая

Выработка гормона мелатонина, снижение выработки гормона кортизола

Утром – пробуждение, днём – отдых, расслабление, вечером – подготовка ко сну

4000 – 5000 К, нейтральная

Выработка гормона кортизола, снижение выработки гормона мелатонина

Основное рабочее время – увеличение концентрации

5000 – 6500 К, холодная

Выработка гормона кортизола

Пик активности мозга, концентрации, внимания и продуктивности

Таким образом, обеспечив один из подходов управления освещением на рабочем месте, можно грамотно положительно влиять на самочувствие и продуктивность сотрудников.

4. Торговое освещение

Где ещё можно наблюдать влияние цветовой температуры источников света на человека? В магазине. Да, это влияние не меняет настроения покупателя, но помогает сделать выбор. При правильном освещении булочки будут выглядеть вкуснее, а рыба и мясо – свежее.

В настоящее время вопрос, какой товар и в каком магазине выбрать, возникает каждый день. Современного потребителя, т.е. каждого из нас, окружает множество магазинов, конкурирующих между собой, но мы всегда пойдём в тот, где товар лучше. А товар лучше там, где его правильно презентуют.

В чём состоит взаимосвязь презентации товара и спектральных характеристик света?

Для торгового освещения важным требованием является качественная передача визуальной информации о товаре потребителю, что можно обеспечить с помощью качественного освещения. За это отвечают такие параметры как высокий уровень освещенности, высокий индекс цветопередачи, правильно подобранная цветовая температура источника и использование специальных спектров.

Различные группы товаров требуют различного освещения: существуют специальные спектры излучения источников, подчеркивающие натуральные оттенки предметов.

К примеру, мясо подсвечивают спектром со смещением в красный цвет, чтобы оно выглядело аппетитно.

Замороженные продукты и рыбу подсвечивают светом с холодной цветовой температурой (5000-6500 К), что подчеркивает свежесть, блеск и охлажденность.

Хлебобулочные изделия подсвечивают теплым светом (2700-3000 К). Как правило, хлеб выложен на натуральных материалах теплых оттенков (дереве), что усиливает гармоничный вид.

Фрукты и овощи освещают направленным светом с высокой цветопередачей, чтобы товар выглядел ярким, свежим и привлекательным.

В табл. 3 приведены дополнительные виды товаров, которые также можно выгодно подчеркнуть:

Таблица 3. Виды товарного ассортимента и необходимые им цветовая температура и смещение спектра

Товарный ассортимент

Цветовая температура, К;

Смещение спектра в цвет

Источник

Тест ФАР белого 6000К и красного 660нм светодиода (PAR). Верны ли замеры при помощи люксметра?

очень интересный и необычный тест. я решил выяснить сколько реальных микромолей дает живой Вт электроэнергии от обычного белого и от фитосветодиода 660 нм.
при этом я так же покажу замеры люксметром и почему люксы и яркость лампы не показательны и не дают представления и энергии ФАР (PAR).

Выводы:
1) Люксметр не показатель
2) Красный светодиод 660 нм. в 2,5 раза дает больше ФАР (PAR \ PPFD) (микромолей) на 1 Вт затраты электроэнергии чем обычный белый светодиод.

Наша группа ВК о фитосвете и лампах для растений: http://vk.com/fitolamps

Комментарии (107):

возможно зимой я соберусь с силами и закажу много разных люмок для теста в лайт-боксе
тогда сделаю один большой обширный обзор

сейчас дорабатываем методику сравнения мощности ламп и приведения к общему знаменателю
например для сравнения не только спектров
но и мощности ФАР например светодиодов и люмок между собой

ФАР обычного диода будет немного меньше
но суть не в этом а в действии
ФАР это как количественный показатель
а пик спектра как качественный

это как ВЕС и КАЧЕСТВО еды
немного разные
так что и эффект на растении будет разный

Правильно ли я подсчитал на счет фито светодиодов, которые стоят в Apollo и в ваших осветительных установках?

Приведу пример с Apollo 4 LED. Световой поток который выдает данная лампа около 2500 лм, это при максимальной мощности 180 W, получается световая отдача около 13,9 лм/вт, но на некоторых сайтах при тех же люменах, пишут заниженную мощность оборудования, около 136 W, скорее всего для сроков эксплуатации. То есть, да же если при таких обстоятельствах подсчитаем и округлим, максимум световая отдача будет доходить до 18 лм/вт. При 18 лм/вт, синий и красный светодиоды выдают 100% пики в областях 445 и 660нм.

Вы на видео показали спектр белого светодиода, аналогичный спектр присутствует и в обычных белых LED лампах. В данном спектр идет хороший пик в 1 относительную единицу на 445нм и около 0,15 относительных единиц в области 660нм. Но в таких белых светодиодных лампах очень большая светоотдача от 80 до 110 лм/вт в некоторых моделях. Возьмем минимум 80 лм/вт, делим на 18 лм/вт ( тех самых фито светодиодов, о которых писал выше ).

Получается, что белые LED лампы по светоотдаче, как минимум лучше в 4 раза. То есть, если 0,15 относительных единиц умножим на 4 получится, что при тех же затрат электроэнергии, белая LED лампа выдаст примерно 0,6 относительных единиц в области спектра 660нм, что всего лишь, почти в два раза меньше, чем фито светодиоды, но во много раз, чем другие типы ламп.

Или тут все зависит от процентного соотношения синего ( 445нм ) и красного ( 660нм ) спектров?

Источник

Длины волн светодиодов для растений и их роль

Человек, который, впервые сталкивается со светодиодами, пытается понять, какие же пропорции ему нужны.
Есть разные длины волн красного спектра, есть синие спектры и бывает, что в лампах больше синих светодиодов, а бывает наоборот.
Встречаются светодиодные лампы только с синими светодиодами или только с красными.
И так, краткая информация ниже, позволит вам разобраться что к чему в светодиодном освещении растений.

Вариант первый
Используемые спектры светодиодов предназначены для работы в качестве самодостаточных источников света для садоводства и растеневодства, а так же в качестве дополнительного освещения к солнечному свету или другим источникам света, где это возможно.
Пики приходятся на красный спектр с длиной волны 660 нм и синий 450 нм. Красного примерно в три раза больше.

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

Вариант второй
Более универсальное сочетание, спектр подходит для различных видов растений на протяжении всего цикла роста и содержит высокую долю красного цвета, который стимулирует фотосинтез в вегетативной стадии роста и способствует цветению. Имеет высокую эффективность фотонов. Но не лучший вариант для единственного источника света на вегетативной стадии роста. Используется больше как дополнительный источник, например в оранжереях или теплицах в сочетании с естественным солнечным светом.

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

Третий вариант
Лучше всего подходит для прорастания растений и цветения. Этот спектр дает быстрый старт растений на стадии рассады. Он также дает лучшие результаты среди всех цветущих растений. Рекомендуется для использования гроу боксах, в камерах прорастания, вегитариях и в цветочной продукции, помогает в формировании большого количества соцветий и междоузлий.

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

Четвертый вариант
Многие производители считают, что данный спектр лучше всего подходит для рассады. Позволяет добиться коренастых растений с коротким межузловым расстоянием, весьма желательно на стадии всходов. Рекомендуется для выращивания рассады до трансплантации, пересадки или пикирования.
Отлично подходит для вегетативного роста и имеет больше энергии в синей области и обеспечивает быстрый рост вегетативной массы. Большое количество синего позволяет сделать растения более карликовыми и пышными, может быть применен как в гроубоксах с целью выращивания биомассы и в открытых теплицах и площадках в комбинации с солнечным светом. Рекомендуется для производства листовых зеленых овощей.

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

Пятый вариант
450 нм, синий
Используют для выращивания материнского дерева, с которого срезают веточки и клонируют материнское растение, получая точную копию с теми же признаками и качествами, что и родительское растение. Дереву не дают зацветать и годами держат в отдельном помещении.
На стадии развития рассады, позволяют получить большее количество женских растений у многих видов растений. Более узкое назначение, но может быть использовано как единственное освещение, так и как дополнительное. Может быть использовано для регулирования роста проростков, для получения товарных качеств рассады.

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

Шестой вариант
Пик на длине волны в 624 нм
Самый высокий фотосинтетический результат относительно квантового выхода для ряда растений. В то же время, его действие на поглощение фитохрома значительно слабее по сравнению с 660 нм, встречались цифры в 10-20% относительно 660 нм. Красный спектр с длиной волны 620-630 нм, особенно хорош при использовании вместе с дальним красным 730 нм. Часто добавляют малую долю этого спектра в лампы, хорошо себя проявляет при созревании плода и улучшает его вкусовые качества.

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

Седьмой вариант
660 нм дальний красный
Эта длина волны имеет очень сильное действие фотосинтеза, а также демонстрирует самое высокое действие на красно-поглощающие фитохрома, с помощью этого спектра регулируется прорастание, цветение и другие процессы. Наиболее эффективным для легкого расширения светового дня с целью вызвать цветение растения длинного дня или предотвращения цветения растения короткого дня. Наибольший энергосберегающий эффект. Отличный вариант, если использовать как дополнительное освещение, например в теплице или в сочетании с лампами имеющими пик в синем спектре.

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

660нм), другая — дальний красный (λ

730нм). Поглотив свет, фитохром переходит из одной формы в другую.
Этот пигмент играет важную роль в ряде процессов, таких как цветение и прорастание семян. Он помогает устанавливать циркадные ритмы, регулирует размер, форму и количество листьев, синтез хлорофилла и расправление эпикотиля и гипокотиля в семенах двудольных растений.
Фитохром был найден почти у всех растений, включая высшие.
Кроме фитохрома, у растений есть криптохромы и фототропины, чувствительные к голубой и ультрафиолетовой частям спектра
Фитохром, в отличие от хлорофилла, есть не только в листьях, но и в семени. Участие фитохрома в процессе прорастания семян для некоторых видов растений таково: красный свет стимулирует процессы прорастания семян, а дальний красный – подавляет. (Возможно, что именно поэтому семена и прорастают ночью). Хотя, это и не является закономерностью для всех растений. Но, в любом случае, красный свет более полезен (он стимулирует), чем дальний красный, который подавляет активность жизненных процессов растения. Так что если вы не знаете для чего он нужен, то лучше не использовать.

длина волны 660 нм какой цвет. Смотреть фото длина волны 660 нм какой цвет. Смотреть картинку длина волны 660 нм какой цвет. Картинка про длина волны 660 нм какой цвет. Фото длина волны 660 нм какой цвет

Девятый вариант
Использование белых светодиодов холодного и теплого спектра
Они дают большие потери в зелёном спектре, так как зелёный спектр почти не потребляют растения.
Но их можно использовать в сочетании с красными светодиодами и не использовать синие.
Белые светодиоды на много дешевле светодиодов с узкой длиной волны, таких как 660нм, 630нм, 450нм, 440нм, 730нм, 400нм и другими длинами волн.
Для цветущих растений не применимы, больше для рассады и выращивании салата.
Кривая спектров зависит от люминофора, которым покрыт кристалл диода.

картинки взял на сайте там есть информация по ним на английском и сжато.
Если у вас есть замечания или дополнения, прошу вмешаться!

Пожалуйста Войти или Регистрация, чтобы присоединиться к беседе.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *