для каких двигателей применяют бензин
Топлива и способы смесеобразования, применяемые в двигателях внутреннего сгорания
В двигателях внутреннего сгорания используются различные: газообразные, жидкие и даже твердые топлива, хотя практическое значение имеют только некоторые из них. Непосредственное сжигание, например, пылевидного твердого топлива в цилиндрах двигателя технически вполне осуществимо, и такие попытки имели место. Однако золообразование в цилиндрах, чрезмерно высокий износ двигателя и другие связанные с этим трудности до сих пор не преодолены. Поэтому твердые топлива предварительно газифицируются в специальных установках — газогенераторах или же используются как сырье для получения жидких топлив, например бензола. Таким образом, для приготовления рабочей смеси в двигателях внутреннего сгорания используются, как правило, жидкие или газообразные топлива.
Смесеобразование в поршневых двигателях во многом зависит от вида применяемого топлива.
Газообразное топливо смешивается с воздухом на входе в двигатель в специальном смесителе, поэтому в его цилиндры поступает уже готовая горючая смесь.
Топливовоздушную смесь из жидкого топлива и воздуха готовят Двумя способами:
1) чистый воздух и жидкое топливо подаются в цилиндры двигателя раздельно и перемешиваются непосредственно в цилиндрах, образуя с остаточными газами рабочую смесь;
2) жидкое топливо перемешивается с воздухом перед поступлением в цилиндры, куда поступает готовая горючая смесь.
Следовательно, возможны два способа приготовления топливо-воздушной смеси: вне цилиндров и непосредственно в цилиндрах. В зависимости от этого двигатели внутреннего сгорания принято разделять на двигатели с внешним и внутренним смесеобразованием.
В двигателях с внешним смесеобразованием и зажиганием рабочей смеси от электрической искры, работающих на жидком топливе, горючая смесь чаще всего подготавливается в карбюраторах. Такие двигатели принято называть карбюраторными. Внутреннее смесеобразование преимущественно используется в двигателях с воспламенением рабочей смеси от тепла, накапливаемого в процессе сжатия. Такие двигатели называются двигателями с воспламенением от сжатия, или дизелями (по имени изобретателя Рудольфа Дизеля).
В практике применяются и другие сочетания методов приготовления и воспламенения рабочей смеси в поршневых двигателях, но они не изменяют основу рассмотренных методов смесеобразования.
Моторные топлива независимо от того, из какого исходного сырья и каким методом они получены, должны обладать определенными физико-химическими свойствами, обеспечивающими надежную работу двигателей, хорошую их топливную экономичность и возможно меньшие износы деталей. Экономичность двигателей, а следовательно, и общий расход горючего в известной мере зависят от теплоты сгорания топлива. Особенно большое значение это имеет для транспортных двигателей, так как радиус действия транспортных средств зависит от запаса топлива, а емкости их баков ограничены.
Газообразные и жидкие топлива нефтяного происхождения представляют собой смеси различных углеводородов широкого фракционного состава. В практике используются топлива с фракционным составом от легких газообразных до тяжелых, трудно испаряемых.
Физико-химические свойства моторных топлив, как правило, регламентируются государственными стандартами, которые обязательно учитываются при проектировании новых двигателей.
Твердые топлива — антрацит, различные угли, древесина, торф, горючие сланцы и другие — используются для получения таких газообразных топлив, как светильный, коксовый, доменный и газогенераторный газы, а также жидких топлив в виде сланцевых, угольных и других бензинов и бензолов, пригодных для сжигания в двигателях внутреннего сгорания.
Жидкие моторные топлива по роду исходного сырья подразделяются на две группы: нефтяные и ненефтяные, получаемые, например, при соответствующей переработке твердого топлива. В двигателях внутреннего сгорания в основном применяются жидкие топлива, получаемые в больших количествах путем переработки нефти. Это бензин, керосин, газойлевые и соляровые фракции и даже мазут, который используется иногда в качестве тяжелого нефтяного топлива.
Бензин представляет собой наиболее летучую жидкую часть нефти, состоящую в основном из группы индивидуальных углеводородных соединений от пентана С5Н12 до октана C8H18. Температура кипения бензиновых компонентов нефти не превышает 185-205°С.
Керосин состоит из более тяжелых углеводородов, выкипающих при температуре 290-300°С. Еще более тяжелыми фракциями являются газойль и соляровое масло. Температура выкипания углеводородов газойлевой фракции достигает 380°С, а солярового масла — 500°С.
Для карбюраторных двигателей основным топливом служит бензин, а в двигателях с воспламенением от сжатия используется дизельное топливо, основанное на смеси фракций нефти, температура кипения которых не выходит за пределы 350°С. В крупных стационарных дизелях находят применение тяжелые моторные топлива, состоящие из смеси солярового масла и мазута. Газотурбинные двигатели работают на керосине.
Нефтяное топливо в основном состоит из химических элементов: углерода С и водорода Н. Содержание углерода колеблется в пределах 85 ÷ 87%, а водорода — 13 ÷ 15%. В небольших количествах они содержат кислород О, азот N, серу S и следы воды. Эти элементы входят в нефтепродукты в виде химических соединений, главными из которых являются углеводороды, составляющие следующие группы (ряды): алканы, цикланы и ароматические углеводороды бензольного ряда.
Групповой состав углеводородных соединений оказывает большое влияние на физико-химические свойства топлив, предопределяя возможности их использования в определенных типах двигателей.
Для топлив карбюраторных двигателей важнейшим качеством является, например, детонационная стойкость. Если детонационная стойкость топлива не соответствует выбранной (завышенной) степени сжатия, то нормальное протекание процесса сгорания нарушается. Сгорание приобретает взрывной характер, порождающий ударную волну давления, которая распространяется в цилиндре со сверхзвуковой скоростью. Удары детонационной волны о стенки цилиндра и поршень при многократном отражении вызывают вибрацию стенок, воспринимаемую как характерный резкий детонационный стук. Работа двигателя с детонационным сгоранием недопустима, так как ухудшает его показатели и приводит к разрушению некоторых ответственных деталей кривошипно-шатунного механизма.
Детонационная стойкость топлив зависит от группового состава углеводородных соединений. Чем больше в топливе ароматических соединений, тем выше его детонационная стойкость.
Антидетонационные свойства топлив оцениваются октановым числом путем сравнения топлив с эталонами. В качестве эталонов приняты изооктан (и—C8H18), обладающий хорошими антидетонационными свойствами, и нормальный гептан (н — С7Н16) с низкими антидетонационными свойствами. Октановое число топлива принимается численно равным процентному содержанию изооктана в такой смеси с нормальным гептаном, которая оказывается равноценной данному топливу по детонационной стойкости при испытаниях в стандартных условиях. Октановые числа (о. ч.) современных бензинов находятся в пределах 70 ÷ 100 единиц.
Для топлив, применяемых в дизелях, важнейшим качеством является самовоспламеняемость, определяющая степень жесткости работы двигателя, о которой можно судить, например, по резкости характерного стука, возникающего при работе дизеля. Самовоспламеняемость дизельных топлив оценивается цетановым числом, которое определяют путем сравнения работы стандартного двигателя на испытуемом топливе и па смеси эталонных топлив. В качестве эталонов используются цетан (С16Н34) из группы алканов с хорошей воспламеняемостью и альфа-метилнафталин (С10Н7СН3), являющийся ароматическим углеводородом, стойким против самовоспламенения. Цетановое число топлива принимается численно равным процентному содержанию цетана в такой смеси с альфа-метил нафталином, которая по самовоспламеняемости оказывается равноценной испытуемому топливу.
Чем выше содержание алканов в дизельном топливе, тем выше его склонность к самовоспламенению и тем мягче, без сильных стуков работают дизели. Цетановое число (ц. ч.) дизельных топлив составляет примерно 45—50 единиц.
Газообразные моторные топлива широко используются для питания как транспортных, так и стационарных силовых установок.
Топлива, предназначенные для транспортных газовых двигателей, должны обладать высокой теплотой сгорания, так как иначе трудно обеспечить достаточный запас топлива при ограниченных габаритах и весе транспортных средств и их силовых устройств. Для стационарных силовых установок это требование не является существенным, поскольку они могут питаться непосредственно от источников получения газа.
В качестве газообразного топлива в двигателях внутреннего сгорания используют природные, промышленные и газогенераторные газы. Природные газы получают из скважин подземных газовых месторождений и на промыслах добычи нефти (промысловые или нефтяные газы); промышленные газы представляют собой продукты переработки нефти, твердых горючих ископаемых (например, при выжиге кокса в доменном производстве, в ряде химических производств и т. д.); газогенераторные газы получают путем газификации различных твердых топлив в газогенераторных установках.
Природные и промышленные газы в зависимости от их агрегатного состояния при использовании в качестве топлива подразделяют на два класса или группы: сжимаемые (или сжатые) и сжижаемые (или сжиженные). Эти названия групп носят условный характер, так как при глубоком охлаждении сжиженными могут быть и газы первого класса, имеющие низкую критическую температуру.
Высококалорийные газы состоят в основном из метана и имеют низшую теплоту сгорания 5500 ÷ 9000 ккал/м3 (≈ 22—36 Мдж/м3). В эту группу входят газы природные, нефтяные (промысловые) и канализационные, получающиеся при переработке сточных вод городских канализационных систем. Сюда же относится метановая фракция коксового газа.
Среднекалорийные газы содержат много водорода и окиси углерода; низшая теплота сгорания их составляет 3500 ÷ 5500 ккал/м3 (≈ 14,2—22 Мдж/м3). В основном это коксовый газ, получаемый в больших количествах при выжиге кокса.
Низкокалорийные газы характеризуются небольшим содержанием горючих компонентов, состоящих в основном из окиси углерода— 20 ÷ 30%. На инертные компоненты (балластную часть) этих газов приходится до 65%, поэтому низшая теплота сгорания их находится в пределах 1000 ÷ 3500 ккал/м3 (≈ 4—14,2 Мдж/м3). В эту группу входят доменный и различные силовые (генераторные) газы. Используются они без предварительного сжатия в основном в стационарных силовых установках.
К сжижаемым газам относятся: этан С2Н6, пропан С3Н8, бутан С4Ню. этилен С2Н4, пропилен С3НС, бутилен С4Н8 и другие компоненты нефтяных (промысловых) и промышленных газов. Низшая теплота сгорания этих газов находится в пределах 14000 ÷ 26000 ккал/м3 (56—104 Мдж/м3) — сжижаются они при обычных температурах и относительно невысоких давлениях. Это выгодно отличает их даже от высококалорийных сжимаемых газов, так как позволяет обходиться более тонкостенными баллонами, рассчитанными на рабочее давление, не превышающее 16 ÷ 20 кГ/см2 (≈ 1,6—2,0 Мдж/м2).
В качестве топлива для транспортных двигателей применяются в основном пропано-бутановые смеси.
Газообразные топлива по сравнению с бензином обладают более высокими октановыми числами, составляющими 90 ÷ 120 единиц, что позволяет повышать степень сжатия в двигателях без опасения вызвать детонационное сгорание. При работе на газообразном топливе в поршневых двигателях заметно уменьшается также износ стенок цилиндров, меньше накапливается отложений, улучшается смесеобразование, вследствие чего облегчается пуск и обеспечивается более полное сгорание топлива в цилиндрах. Поэтому газообразное топливо целесообразно использовать в автомобильных двигателях.
В поршневых двигателях с внешним смесеобразованием можно использовать только некоторые из перечисленных видов моторных топлив — газообразные и жидкие, обладающие сравнительно хорошей испаряемостью, например бензин. При использовании топлив с недостаточной испаряемостью нельзя получить на входе в цилиндры горючую смесь с нужным паросодержанием, что нарушает смесеобразование и расстраивает нормальное протекание рабочего цикла в двигателе. С точки зрения ассортимента потребляемых топлив более предпочтителен поэтому способ внутреннего смесеобразования. Двигатели с внутренним смесеобразованием при соответствующей организации процессов могут практически работать на любых жидких моторных топливах, начиная от легких, высокооктановых бензинов до тяжелых погонов нефти. Такие многотопливные двигатели получают все большее распространение.
В каких двигателях применяются автомобильные бензины?
Говоря о том, в каких двигателях применяются автомобильные бензины, можно выделить два варианта ответа: узкий и широкий. В узком понимании автомобильные бензины используются для двигателей внутреннего сгорания автомобилей и прочего транспорта. В широком же смысле автомобильный бензин – это достаточно чистый и универсальный источник энергии, который могут использовать различные силовые установки, о которых мы поговорим в этой статье.
Основное применение: автомобильные двигатели
Конечно же, начать стоит с прямого применения данного вида топлива – в двигателях внутреннего сгорания. Бензиновые моторы подразделяются по следующим критериям:
Во всех двигателях применяется схожий принцип воспламенения: топливо смешивается с воздухом, сжимается, после чего воспламеняется при помощи искры, расширяется и приводит в движение поршень.
Прочие виды двигателей, работающие на автомобильном бензине
Ключевое свойство автобензина – его универсальность. Это источник энергии, который может приводить в движение аппараты различного типа и назначения. Чаще всего он применяется в таких агрегатах:
Сфера применения автомобильных бензинов напрямую зависит от марки продукта, качества, а также прочих технических характеристик. К примеру, в холодное время года возможно применять только топливо с особыми присадками, обеспечивающими стабильное воспламенение при низких температурах.
Производители двигателей указывают, какой тип топлива должным образом подходит для двигателя. При эксплуатации силовых агрегатов эти рекомендации важно строго соблюдать.
Что такое автомобильные бензины, их состав и свойства
После изобретения и популяризации двигателя внутреннего сгорания бензин стал одним из главных продуктов, получаемых из нефти. Его качество и состав зависят не только от технологии производства, но и от места добычи нефти. Именно этот ценный ресурс в XX веке стал причиной многих войн и конфликтов. Каков же состав бензина и его характеристики? Попробуем разобраться в этой статье.
Что такое бензин
Точную химическую формулу вывести сложно, так как это смесь углеводородов со следами серы, азота, кислорода и других соединений. Бензин имеет низкие детонационные свойства. Это одна из его важнейших характеристик, поскольку такие понятия, как октановое число, детонация и степень сжатия являются ключевыми в работе двигателя и топлива.
Разберем кратко понятия октанового числа и детонации, которые связаны между собой. Чем выше октановое число бензина, тем он устойчивее к детонации, то есть, способен гореть без взрыва при сжатии. Углеводород изооктан, входящий в состав, имеет антидетонационные свойства. Его значение берут за 100. Н-гептан легко взрывается и имеет значение 0. Соотношение этих углеводородов и образует октановое число.
Пример. Октановое число топлива равно 70. Значит, по детонационным свойствам оно эквивалентно смеси 70% изооктана и 30% н-гептана.
Получение и виды
Бензины и другие углеводороды (дизельное топливо, керосин и др.) получают путем перегонки нефти. Существует несколько способов получения фракций из нефти:
Прямая перегонка
Прямая перегонка заключается в отборе разных фракций путем нагревания в определенных температурных пределах. Пары бензина собираются в верхней части колонны, а затем конденсируются и охлаждаются, образуя жидкий бензин. Ниже по уровню колонны получают фракции лигроина, керосина, солярового масла, а в самом нижнем остатке получается мазут.
До 100°C получают I сорт, до 110°C – специальный, до 130°C – II сорт. Но получаемый таким образом бензин имеет низкое октановое число, как правило, не выше 65-70. Его доля составляет всего 5-15% от объема нефти.
В результате прямой перегонки получают также и дизельное топливо как смесь солярового масла и керосина. От бензина оно отличается узким фракционным составом и применяется в двигателях с воспламенением от сжатия, то есть, в дизельных. Способность воспламеняться под давлением и температурой – это главное свойство дизельного топлива. Для его характеристики используются не октановое, а цетановое число.
Крекинг
Название этого способа происходит от английского глагола «to crack» – «расщеплять», «раскалывать». Метод позволяет увеличить долю бензиновых фракций до 50-60%. В его основе лежат деструктивные методы, то есть, высокомолекулярные фракции расщепляются на фракции с низкомолекулярной массой. Разные группы углеводородов, такие как парафиновые, нафтеновые или ароматические, разлагаются с разной скоростью.
В свою очередь, крекинг-процесс может происходить двумя способами: расщепление под действием высокой температуры и расщепление в присутствии катализаторов (алюмосиликаты). Термический крекинг происходит под давлением и при температуре 470-500°C. Каталитический крекинг является более совершенным. Катализатор превращает часть непредельных углеводородов в предельные, тем самым повышается качество. Конечно, технологически эти процессы более сложны. Но даже при более совершенном каталитическом крекинге октановое число не выше 75-80.
Риформинг
Риформинг – это вид крекинга, где сырьем служат лигроины или низкооктановые бензины. Таким способом увеличивают октановое число после прямой перегонки нефти или после термического или каталитического крекинга. Получают бензины с октановым числом 95-98, а с добавлением этиловой жидкости (спиртов) доводят до 100 и выше. Это также сложный технологический процесс, имеющий несколько видов.
Свойства бензинов
Как уже говорилось, бензины имеют высокую летучесть и легко воспламеняются. Наряду с устойчивостью к детонации, эти характеристики также относятся к основным. По физико-химическим параметрам бензины должны обладать следующими свойствами:
Маркировка автомобильных бензинов
Маркировка состоит из буквенных и цифровых символов. Например, АИ-95 или А-90. Буквы указывают на метод определения октанового числа. Он бывает двух видов:
Исследовательское октановое число (ОЧИ) тестируется на одноцилиндровой установке, например, УИТ-85, при частоте вращения коленчатого вала 600 об/мин, переменной степени сжатия и температуре всасываемого воздуха 52°С, угол зажигания 13°. Тест показывает поведение бензина при средних и малых нагрузках.
По ГОСТ Р 54283-2010 маркировка автомобильных бензинов должна состоять из трех групп знаков, разделенные дефисами.
Пример. АИ-95-4. АИ обозначает исследовательский метод определения октанового числа, 95 – октановое число, 4 – соответствие стандарту ЕВРО-4, всего их четыре класса: 2, 3, 4 и 5.
По ГОСТ 32513-2013 основными марками автомобильных бензинов являются:
Как проверить качество
Водителю нужно всегда внимательно относиться к качеству топлива, и заливать только рекомендованный производителем по октановому числу бензин. К сожалению, недобросовестные поставщики или продавцы могут продавать некачественное или разбавленное топливо, что понижает заявленное октановое значение и его свойства. Для двигателя это чревато серьезными последствиями.
Есть несколько простых и доступных методов определения качества топлива.
Бензин – это питание двигателя автомобиля. От его качества и состава во многом зависит правильная работа силового агрегата. Водителю нужно разбираться в марках, понимать значение октанового числа и знать другие характеристики. Нужно помнить, что качественное топливо – это залог долгой службы любого двигателя.
Бензин, что это?
Бензин — это горючая смесь углеводородов, а не моновещество, имеющее четкую структуру. Существует немало разновидностей данной жидкости, отличающихся не только названием, но и молекулярным строением и составом. В зависимости от вида бензина, его химические и физические свойства меняются. Это расширяет сферу применения бензина. Правильный выбор топлива является залогом длительной службы двигателя.
Применение
Бензин в основном используется в качестве топлива. Некоторые виды бензина предназначены только для заправки машин. Сейчас выпускают несколько марок топлива, качество которых различается в зависимости от октанового числа и включения присадок. Есть специальный автобензин для зимнего и летнего периода.
Производятся специальные разновидности топлива, использовать которые можно только для заправки самолетов. Осуществляется выпуск бензина, который применяется в качестве растворителя и как сырье для химической промышленности.
Бензин используется в качестве сырья для производства парафина и этилена. Применяется эта жидкость для блендинга и проведения процессов органического синтеза. Используется он для чистки и обезжиривания поверхностей и кожи. Данное вещество применяется для очищения металлических элементов. Он используется для изготовления:
Кроме того, этот продукт может применяться даже для выведения жирных пятен с разных поверхностей.
Производство
Получение топлива возможно путем перегонки, высокотемпературной обработки, т.е. крекинга, а также низкотемпературного воздействия, т.е. риформинга и т.д. Существует еще несколько методов получения бензина из сырья. После первичной обработки проводится очистка сырья и введение в состав специальных присадок, повышающих качество продукта.
Из чего делают бензин?
Главным сырьем, из которого изготавливается топливо, выступает сырая нефть. Возможно производство данного вещества путем сложной переработки каменного угля и природного газа, но данные методы используются крайне редко из-за высокой стоимости процесса.
Технология производства
Производство бензина — это технологически сложный процесс. Сначала берутся пробы сырья для определения включения в них примесей солей и серы. Измеряется объем включения легких фракции.
Наиболее простой метод получения топлива — это атмосферно-вакуумная перегонка. Она позволяет отделить легкие фракции. После этого выполняется очищение сырья от примесей солей и серы, т.к. эти вещества ухудшают качество готового продукта. Включение данных веществ в нефти, добываемой по всему миру, неоднородно. На большинстве месторождений России нефть содержит большое количество серы, поэтому ценится даже ниже, чем сырье, которое добывается в Азербайджане.
Процедуры очищения позволяют получить достаточно большое количество топлива из сырья, но оставшихся нефтяных фракций, незадействованных в процессах, сохраняется немало. Их отправляют на вторичную перегонку. Кроме того, во время данной процедуры выполняется частичный каталитический крекинг. После этого переработанное сырье подвергается каталитическому риформингу.
Подготовленное сырье подвергается крекингу. При данной процедуре в тяжелых фракциях при их нагреве до 700°C наблюдается разрыв молекулярный цепочек. Это способствует формированию вторичного продукта. При низкотемпературной обработке сырья выход конечного продукта составляет не более 20%, но при обработке при высоких температурах объем полученного готового продукта возрастает до 70%.
После этого полученный продукт обрабатывается в газофракционирующей установке. В него добавляют дополнительные компоненты, которые подразделяются на классы и сорта. После этого готовый бензин поступает на АЗС.
Разновидности
Сейчас выпускается множество разновидностей бензина, различающихся составом и характеристиками. Важнейшим параметром для определения качества продукта выступает октановое число. Большую роль играет и количество примесей. Главными компонентами этого продукта выступают гептан и изооктан. Данные вещества имеют разные возможности к детонации в камерах сгорания двигателя. От соотношения их включения в готовый продукт зависит октановое число.
Марки бензина
Для того чтобы бензин мог использоваться в качестве топлива, он должен обладать рядом характеристик. Для определения качества продукта исследуются такие параметры, как:
В зависимости от типа, продукт подразделяется на автомобильный, который маркируется буквой «А», а также авиационный, отмечающийся буквой «Б». Кроме того, при маркировке часто добавляется буква «И», которой отмечается октановое число, полученное исследовательским методом. Числовым значением отмечается октановое число.
АИ-98 отличается не только высоким октановым числом, но некоторыми особенностями производства. При изготовлении данного продукта используется ряд компонентов, в т.ч. толуол, алкилбензин, изопентан и т.д.
Экстра АИ-95 отличается высоким качеством из-за присутствия антидетонационных присадок. Он изготавливается из дистиллятного сырья с включением изопарафиновых элементов. Кроме того, при производстве используется газовый бензин. Благодаря особой технологии изготовления, в готовом продукте крайне низкое содержание свинца.
В бензине марки АИ-95, по сравнению с бензином экстра, концентрация свинца выше на 30%. Высокое содержание этого элемента понижает качество продукта.
Под маркой АИ-92 скрывается бензин среднего качества. В нем высоко содержание антидетонационных присадок. Плотность данного продукта достигает 0,77г/смА-923.
Автомобильный бензин
На АЗС сейчас можно приобрести стандартные марки АИ-92, АИ- 95 и АИ-98. Кроме того, в продаже имеется автомобильный бензин для грузовиков — А-72 и АИ-80. Более очищенными считаются продукты, которые изготавливаются по европейским стандартам. Они отмечаются как евро 3, евро, 4, евро 5 и суперевро. При покупке бензина обязательно нужно обращать внимание на его маркировку, т.к. использование некачественного продукта приводит тому, что двигатель быстро выходит из строя.
Авиационный бензин
Бензины, предназначенные для заправки самолетов, отличаются более высоким октановым числом и лучшими качественными характеристиками. Продукт содержит минимальное количество легких фракций, что снижает риск формирования паровых пробок. Кроме того, авиационный бензин отличается низким включением примесей, способствующих активизации коррозийных процессов и формированию нагара на деталях. Продукт также отличается высокой химической стабильностью.
Бензин-растворитель
Данный класс продукта используется в химическом производстве. Эти продукты широко применяются для экстрагирования, т.е. извлечения необходимых веществ из растительных масел, канифоли и озокерита. Растворители на основе этого продукта активно применяются для разведения различных красок и лаков, устранения жировых пятен и т.д. Сфера использования данной разновидности бензинов крайне широка.
Нафта
Нафта — это специфическая группа, которая отличается высокой температурой кипения, достигающая +180°C. Данный продукт используется как сырье для химической промышленности.
Топливо для бензиновых двигателей и его характеристики
Большинство людей обращают внимание только на октановое число, но это далеко не единственный важный параметр. У углеводородов имеется разная скорость закипания. Качество продукта зависит от данных параметров.
Бензины АИ и Евро различаются процентным соотношением трудно- и легко- закипаемых фракций. От данного параметра зависит способность перегорания. В топливе, применяющемся для бензиновых моторов, содержится сразу несколько фракций.
Некоторые из них могут закипать при 27°C. Таким образом, первичное воспламенение возможно даже при пуске холодного двигателя. Другие фракции закипают при 100°C. Они подходят для поддержания стабильной работы двигателя. Кроме того, в состав топлива входят фракции, закипающие при 200 °C. Одни необходимы для поддержания процесса выключения мотора.
Сезонный бензин
Сейчас выпускается бензин для зимнего и летнего периода. При выборе топлива следует обращать внимание на такой параметр как давление паров.
Лучше, чтобы топливо для зимней езды имело данный показатель в пределах от 90 до 100 кПа. Для производства зимнего продукта в смесь добавляется бутан. Благодаря этому, он хорошо закипает даже в сильный мороз.
Летний вариант отличается более низким показателем давления насыщенных паров. В теплое время года допускается бензин с параметром 80 кПа.
Экологические требования к топливу
С каждым годом происходит ужесточение требований в экологичности топлива. Это обусловлено тем, что продукты сгорания крайне негативно отражаются на состоянии окружающей среды и способствуют возникновению парникового эффекта.
В топливе марок АИ высоко содержание дополнительных присадок и компонентов, которые способствуют снижению экологических параметров данных продуктов. Высокий выброс отравляющих веществ при сгорании обусловлен устаревшими технологиями производства.
Большей экологичностью отличается топливо класса евро. При сгорании выделяется примерно на 10-12% меньше отравляющих газов. Из-за применения более технологичных методов производства в выхлопах меньше оксида азота, ароматических углеводородов, серы и бензола. Благодаря этому, снижается общий вред, наносимый продуктами сгорания окружающей среде.
В ряде стран запрещена продажа топлива, не соответствующего стандартам экологичности. Меры по ужесточению требований к экологичности топлива стали предпринимать из-за повышения численности людей, которые ежедневно используют личные автомобили. Это спровоцировало повышение количества парниковых газов, усугубляющих состояние атмосферы.






