для каких видов аварий система пч ад обычно сама может отследить возможность продолжения работы
Лекция 9. Регулируемые электроприводы с АД
Цель: ознакомление с возможными вариантами регулируемого ЭП на базе АД.
Частоту вращения ротора электродвигателя переменного тока можно определить, как
, (9.1)
Изменяя один или несколько параметров, входящих в (9.1), можно регулировать частоту вращения и момент АД. Регулирование частоты вращения короткозамкнутой машины дискретно (2:1, 3:2, 3:1 и т.д.) осуществляется переключением числа пар полюсов на основании соотношения (9.1). Обмотка статора короткозамкнутой машины выполняется секционированной, выводы (начало – конец) которой располагаются на клеммной коробке и коммутируются релейно – контакторной частью системы управления.
Существует большое разнообразие схем переключения числа пар полюсов. При необходимости изменить напряжение на обмотке используют соединение обмоток треугольником, двойным треугольником, звезда – треугольник и т.д. Широкое распространение этот вид регулирования получил в станкостроении, грузоподъемной технике (лифты) и других отраслях. Трудоемкость изготовления многоскоростного электродвигателя возрастает по сравнению с обычной машиной за счет выполнения обмотки секционированной.
Регулирование частоты вращения электродвигателей изменением их скольженияосновано на введении в цепь ротора АД дополнительного сопротивления или ЭДС, а также изменении напряжения на статоре электродвигателя.
Изменение добавочного сопротивления в цепи фазного ротора двигателя позволяет изменять форму механической характеристики электродвигателя и, следовательно, частоту вращения насосного агрегата. Мощность скольжения, пропорциональная глубине регулирования, при этом рассеивается в виде тепла в регулировочных реостатах. Этот способ регулирования при безусловной простоте и малой стоимости оборудования чрезвычайно неэкономичны из-за увеличения потерь скольжения пропорционально глубине регулирования скорости. Обычно они используются для двигателей малой мощности и формирования пусковых режимов АД.
Регулирование частоты вращения электродвигателей изменением напряжения на его статореосуществляется обычно системой «тиристорный регулятор напряжения – асинхронный двигатель» (ТРН – АД, рисунок 9.1,в).
Вращающий момент асинхронного электродвигателя пропорционален квадрату напряжения, подводимого к электродвигателю.
При изменении напряжения значение критического скольжения не изменяется, поэтому максимальный момент при любых изменениях напряжения соответствует одному и тому же значению критического скольжения, равному примерно 0,1-0,2. Этим определяется сравнительно узкий диапазон регулирования по частоте вращения, который может обеспечить этот способ регулирования. Пределы регулирования можно увеличить, используя АД с повышенным скольжением или включение добавочного сопротивления в цепь фазного ротора, а также применяя системы управления, замкнутые по скорости.
При относительной дешевизне и простоте в обслуживании, основным недостатком данного варианта является то, что энергия скольжения рассеивается в двигателе, а коэффициент мощности системы уменьшается с увеличением скольжения двигателя.
В электроприводепо схеме асинхронного вентильного каскада(АВК–рисунок 9.1,д) регулирование частоты вращения электродвигателя осуществляется изменением противо-ЭДС инвертора, вводимой в цепь выпрямленного тока ротора асинхронного электродвигателя с фазным ротором. Энергия скольжения ротора рекуперируется в питающую электрическую сеть через преобразователь АВК, который состоит из двух основных элементов: неуправляемого выпрямителя и зависимого инвертора. Согласующий трансформатор необходим в том случае, если номинальное напряжение питающей сети отличается от номинального напряжения преобразователя АВК.
Основными достоинствами данной системы по сравнению с вариантом ПЧ-АД являются меньшая установленная мощность преобразователя, соответствующая глубине регулирования скорости, и простота управления. Как положительное качество отмечается также возможность при аварии в преобразователе перейти в нерегулируемый режим (закоротив ротор) или в режим с пониженной частотой вращения при введении в цепь ротора резистора.
Варианты систем регулируемого электропривода с АД
Питание двигателя частотно – регулируемого электропривода осуществляется вентильным преобразователем частоты (ПЧ – рисунок 9.1, а.б), в котором постоянная частота питающей сети преобразуется в переменную
. Пропорционально частоте
изменяется частота вращения электродвигателя, подключенного к выходу преобразователя. В настоящее время для реализации частотного управления машинами переменного тока применяют различные варианты преобразователей частоты, отличающиеся принципом действия, схемными решениями, алгоритмами управления и т.д. они достаточно глубоко разработаны. Развитие элементной базы и техники управления, появление новых датчиков, применение микропроцессорного и компьютерного управления обусловливают непрерывное совершенствование системы частотного асинхронного электропривода.
К достоинствам системы ПЧ-АД следует отнести следующее:
— высокий КПД в широком диапазоне регулирования скорости АД, так как последний во всем диапазоне регулирования работает с малой величиной скольжения ротора (малыми потерями скольжения);
— хорошие регулировочные свойства, обеспечивающие возможность плавно регулировать скорость и формировать требуемые характеристики и законы регулирования;
— надежность используемого в системе АД с короткозамкнутым ротором.
Законы частотного регулирования
Для идеализированного электродвигателя, у которого можно пренебречь активным сопротивлением статора, основной закон изменения напряжения при частотном регулировании выражается формулой:
(9.2)
где: МС1 и МС2 – моменты статической нагрузки, соответствующее работе двигателя при частотах f1 и f2;
U11 U12— напряжение на двигателе при тех же частотах.
При постоянстве момента статической нагрузки напряжение источника питания должно изменяться пропорционально его частоте.
В этом случае для идеализированного двигателя сохраняется перегрузочная способность (Мк=const) и закон изменения напряжения примет вид
При постоянстве мощности на валу двигателя в процессе регулирования скорости закон изменения напряжения:
, (9.4)
При вентиляторной нагрузке напряжение на статоре должено изменяться по закону:
(9.5)
Механические характеристики для этого случая представлены на рисунке 9.2.
Особенности исследования работы системы ПЧ с ШИМ–кабель–АД
Особенности исследования работы системы ПЧ с ШИМ–кабель–АД
Частотное регулирование, пуск и торможение относятся к наиболее экономичным методам управления короткозамкнутыми асинхронными двигателями. В настоящее время частотное управление считается целесообразным при питании двигателей от статических преобразователей частоты [1], [2].
Для регулирования АД средней и малой мощности чаше других используется ПЧ с ШИМ [1]. Такие ПЧ (рис. 1) обеспечивают электроприводам повышенную управляемость, быстродействие благодаря возможности получения практически любых требуемых соотношений частоты и амплитуды напряжения питания.
Наряду с преимуществами ПЧ с ШИМ обладают рядом недостатков [3], напряжение на выходе ПЧ с ШИМ существенно отличается от синусоидального, получаемого при питании АД от обычной сети переменного тока частотой 50 Гц. Это обстоятельство требует учета наличия высших гармоник в кривой напряжения, подводимого от ПЧ к АД. К последствиям несинусоидального питания следует отнести колебания электромагнитной силы АД, увеличение вихревых токов и механические резонансы в килогерцовом диапазоне, которые ведут к усилению шума и вибрации.
Колебания момента и акустический шум могут быть уменьшены за счет увеличения частоты коммутации вентилей. Применение в ПЧ современных IGBT-транзисторов [3] позволяет увеличить частоту коммутации до 20… 50 кГц.
Модули с ЮВТ- транзисторами имеют время включения сотни наносекунд — единицы микросекунд, допускают многократные перегрузки по току продолжительностью до 10 мкс, что позволяет осуществлять их надежную защиту по управляющему входу [4]. Управление IGBT осуществляется от специальных микросхем-драйверов со своими источниками питания и защиты [3], [2].
На рис. 2 показана осциллограмма напряжения на зажимах АД, подключенного к ПЧ ШИМ, на котором видны импульсы напряжения, сопровождающие включение и отключение транзисторов.
Импульсы или перенапряжения возникают из-за крутых фронтов изменения напряжения на выходе ПЧ ШИМ, вызывающих процессы распространения электромагнитных волн вокруг кабеля от ПЧ до АД и около статорной обмотки АД.
Бегущие электромагнитные волны приводят к неравномерному распределению напряжения по длине обмотки АД. Наибольшая электрическая нагрузка приходится на межвитковую изоляцию первых витков, которые электрически расположены ближе всего к месту соединения кабеля и обмотки [5].
Определение параметров цепей, в которых действуют перенапряжения, производится с помощью эквивалентной частоты ƒэкв импульсов, определенной через длительность фронта импульса ƒф.
При указанных значениях ƒэкв в кабеле и обмотках АД происходят быстропротекающие волновые электромагнитные процессы [1, 5, [6]. Скорости движения волн электромагнитной энергии, соответствующие ƒэкв, значительно (в 10 4 — 10 3 раз) превышают скорости преобразования энергии при обычных номинальных частотах (50 Гц) или частотах регулирования 10… 10 3 Гц.
Отсюда для исследования и расчета этих процессов приходится применять теорию длинных линий передачи или цепей с распределенными параметрами [6].
Считается [5], что волна электромагнитного поля распространяется вдоль обмотки по пазовой изоляции. Это поле одновременно проникает как в медь обмотки, так и в сталь сердечника и корпуса.
Глубина проникновения поля тем меньше, чем выше скорость изменения напряжения на фронте волны или чем больше эквивалентная частота.
Известна [7], что простейшая модель кабеля, включающая два уравнения в частных производных, которая соответствует линии с последовательно включенными активным сопротивлением r0 и индуктивностью Lo и параллельно включенными емкостью Со, и проводимостью Go (рис. 3). Обычно считается, что параметры такой линии не зависят от времени t и координаты х и одинаковы для прямого и обратного проводов.
Как уже отмечалось ранее, в качестве преобразователя частоты могут использоваться электромашинные и статические (тиристорные или транзисторные) преобразователи. В первом случае регулируемые АД питаются от синхронного генератора СГ, приводимого во вращение двигателем постоянного тока независимого возбуждения, который, в свою очередь, получает питание от генератора постоянного тока или от ТП. Иначе говоря, привод СГ осуществляется либо по системе ГД, либо по системе ТП-Д. В качестве электромашинных преобразователей частоты применяются и асинхронные преобразователи, вращаемые асинхронным двигателем (для питания электропил в лесной промышленности).
Схема имеет два канала управления: канал управления частотой, воздействующий на скорость СГ и канал управления напряжением, воздействующий на возбуждение СГ. Первый канал имеет структуру системы ТП-Д и обладает значительной инерционностью, обусловленной механической инерцией агрегата (ДПТ-СГ). Второй канал также инерционен в связи с наличием электромагнитной инерции цепи возбуждения СГ.
Более совершенными являются системы со статическими преобразователями частоты. В этих системах в самом преобразователе только две ступени преобразования энергии – ступень преобразования переменного тока в постоянный и ступень инвертирования. Эти две ступени в самостоятельном виде присутствуют в ПЧ со звеном постоянного тока (см.рис.), а в НПЧ функции выпрямления и инвертирования совмещены в реверсивном преобразователе постоянного тока, выпрямленное напряжение которого изменяется системой управления. Принципиальная схема привода с НПЧ изображена на рис.Как известно, тиристорный преобразователь частоты(ТПЧ) может обладать либо свойствами источника напряжения (АИН), либо источника тока (АИТ). В первом случае преобразователь имеет канал управления напряжением и канал управления частотой. Во втором случае ТПЧ кроме канала управления частотой имеет канал управления током. Канал управления частотой можно считать практически безинерционным. Канал управления напряжением или током воздействует на УВ и его быстродействие определяется быстродействием выпрямителя.
Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.
Система ПЧ-АД (преобразователь частоты — асинхронный двигатель)
Как уже отмечалось ранее, в качестве преобразователя частоты могут использоваться электромашинные и статические (тиристорные или транзисторные) преобразователи. В первом случае регулируемые АД питаются от синхронного генератора СГ, приводимого во вращение двигателем постоянного тока независимого возбуждения, который, в свою очередь, получает питание от генератора постоянного тока или от ТП. Иначе говоря, привод СГ осуществляется либо по системе ГД, либо по системе ТП-Д. В качестве электромашинных преобразователей частоты применяются и асинхронные преобразователи, вращаемые асинхронным двигателем (для питания электропил в лесной промышленности).
Схема регулирования скорости СГ, а следовательно, и частоты, по системе ТП-Д проще и дешевле, чем по системе ГД, т. к. в этом случае меньше число ступеней преобразования энергии. В качестве примера на рис. изображена схема одновременного частотного регулирования ряда АД, которые получают питание от СГ, скорость которого, следовательно, частота выходного напряжения, регулируется по системе ТП-Д. Такая схема применяется, в тех случаях, когда требуется одновременно синхронно изменять скорость ряда к. з. АД, в частотности, для питания двигателей рольгангов прокатного стана. В этой схеме обеспечивается закон пропорционального регулирования, т. е.
.
Схема имеет два канала управления: канал управления частотой, воздействующий на скорость СГ и канал управления напряжением, воздействующий на возбуждение СГ. Первый канал имеет структуру системы ТП-Д и обладает значительной инерционностью, обусловленной механической инерцией агрегата (ДПТ-СГ). Второй канал также инерционен в связи с наличием электромагнитной инерции цепи возбуждения СГ.
Более совершенными являются системы со статическими преобразователями частоты. В этих системах в самом преобразователе только две ступени преобразования энергии – ступень преобразования переменного тока в постоянный и ступень инвертирования. Эти две ступени в самостоятельном виде присутствуют в ПЧ со звеном постоянного тока (см. рис.), а в НПЧ функции выпрямления и инвертирования совмещены в реверсивном преобразователе постоянного тока, выпрямленное напряжение которого изменяется системой управления. Принципиальная схема привода с НПЧ изображена на рис. Как известно, Тиристорный преобразователь частоты (ТПЧ) может обладать либо свойствами источника напряжения (АИН), либо источника тока (АИТ). В первом случае преобразователь имеет канал управления напряжением и канал управления частотой. Во втором случае ТПЧ кроме канала управления частотой имеет канал управления током. Канал управления частотой можно считать практически безинерционным. Канал управления напряжением или током воздействует на УВ и его быстродействие определяется быстродействием выпрямителя.
При частотном управлении, при котором обеспечиваются законы YS=const, Ym=const, Yr=const в пределах абсолютных скольжений Sa
Теория электропривода
Частотно регулируемый электропривод
Производим и продаем частотные преобразователи: Цены на преобразователи частоты(21.01.16г.): Частотники одна фаза в три: Модель Мощность Цена CFM110 0.25кВт 2300грн CFM110 0.37кВт 2400грн CFM110 0.55кВт 2500грн CFM210 1,0 кВт 3200грн …
Переходные процессы при пуске и торможении электропривода с короткозамкнутым Асинхронным двигателем (АД)
В большинстве случаев к. з. АД питается от сети с U1=const и f1=const. Поэтому нелинейность их механических характеристик проявляется полностью как в режимах пуска, так и торможения. Магнитный поток в …
Переходный процесс электропривода с двигателем независимого возбуждения при изменении магнитного потока
Обычно ДНВ работает при Ф=Фн если U=const или U=var. Необходимость ослабления потока возникает когда требуется получить скорость, превышающую основную (согласно требованиям технологического процесса ). Если бы поток изменялся мгновенно, то …
Продажа шагающий экскаватор 20/90
Цена договорная
Используются в горнодобывающей промышленности при добыче полезных ископаемых (уголь, сланцы, руды черных и
цветных металлов, золото, сырье для химической промышленности, огнеупоров и др.) открытым способом. Их назначение – вскрышные работы с укладкой породы в выработанное пространство или на борт карьера. Экскаваторы способны
перемещать горную массу на большие расстояния. При разработке пород повышенной прочности требуется частичное или
сплошное рыхление взрыванием.
Вместимость ковша, м3 20
Длина стрелы, м 90
Угол наклона стрелы, град 32
Концевая нагрузка (max.) тс 63
Продолжительность рабочего цикла (грунт первой категории), с 60
Высота выгрузки, м 38,5
Глубина копания, м 42,5
Радиус выгрузки, м 83
Просвет под задней частью платформы, м 1,61
Диаметр опорной базы, м 14,5
Удельное давление на грунт при работе и передвижении, МПа 0,105/0,24
Размеры башмака (длина и ширина), м 13 х 2,5
Рабочая масса, т 1690
Мощность механизма подъема, кВт 2х1120
Мощность механизма поворота, кВт 4х250
Мощность механизма тяги, кВт 2х1120
Мощность механизма хода, кВт 2х400
Мощность сетевого двигателя, кВ 2х1600
Напряжение питающей сети, кВ 6
Более детальную информацию можете получить по телефону (063)0416788
Система ПЧ-АД (преобразователь частоты — асинхронный двигатель)
В качестве преобразователя частоты могут использоваться электромашинные и статические (тиристорные или транзисторные) преобразователи. В первом случае регулируемые АД питаются от синхронного генератора СГ, приводимого во вращение двигателем постоянного тока независимого возбуждения, который, в свою очередь, получает питание от генератора постоянного тока или от ТП. Иначе говоря, привод СГ осуществляется либо по системе ГД, либо по системе ТП-Д. В качестве электромашинных преобразователей частоты применяются и асинхронные преобразователи, вращаемые асинхронным двигателем (для питания электропил в лесной промышленности).
Схема регулирования скорости СГ, а следовательно, и частоты, по системе ТП-Д проще и дешевле, чем по системе ГД, т. к. в этом случае меньше число ступеней преобразования энергии. В качестве примера на рис. изображена схема одновременного частотного регулирования ряда АД, которые получают питание от СГ, скорость которого, следовательно, частота выходного напряжения, регулируется по системе ТП-Д. Такая схема применяется, в тех случаях, когда требуется одновременно синхронно изменять скорость ряда к. з. АД, в частотности, для питания двигателей рольгангов прокатного стана. В этой схеме обеспечивается закон пропорционального регулирования, т. е.
.
Схема имеет два канала управления: канал управления частотой, воздействующий на скорость СГ и канал управления напряжением, воздействующий на возбуждение СГ. Первый канал имеет структуру системы ТП-Д и обладает значительной инерционностью, обусловленной механической инерцией агрегата (ДПТ-СГ). Второй канал также инерционен в связи с наличием электромагнитной инерции цепи возбуждения СГ.
Более совершенными являются системы со статическими преобразователями частоты. В этих системах в самом преобразователе только две ступени преобразования энергии – ступень преобразования переменного тока в постоянный и ступень инвертирования. Эти две ступени в самостоятельном виде присутствуют в ПЧ со звеном постоянного тока (см. рис.), а в НПЧ функции выпрямления и инвертирования совмещены в реверсивном преобразователе постоянного тока, выпрямленное напряжение которого изменяется системой управления. Принципиальная схема привода с НПЧ изображена на рис. Как известно, Тиристорный преобразователь частоты (ТПЧ) может обладать либо свойствами источника напряжения (АИН), либо источника тока (АИТ). В первом случае преобразователь имеет канал управления напряжением и канал управления частотой. Во втором случае ТПЧ кроме канала управления частотой имеет канал управления током. Канал управления частотой можно считать практически безинерционным. Канал управления напряжением или током воздействует на УВ и его быстродействие определяется быстродействием выпрямителя.
При частотном управлении, при котором обеспечиваются законы YS=const, Ym=const, Yr=const в пределах абсолютных скольжений Sa