до какой температуры можно охладить лед
19 видов льда
Лёд взрывается, тонет в воде, проводит ток, генерирует мощное магнитное поле.
Мой друг в детстве приклеивал на капельку пластилина таракана на дно формочки для льда, заливал водой и замораживал. Потом швырял ледяные кубики с начинкой в стену и кричал «Я — Сабзиро!» А я всё время выбирал Глациуса в Killer Instinct, потому что изящный. В «Семиевии» из льда на астероиде построили реактивный двигатель и льдом же его топили. Ну и, конечно же, «Колыбель для кошки». А тем временем в реальности…
Аргоннская национальная лаборатория в 1980 придумала технологию ледяной гидросмеси (ice slurry), которая не образует ледяные наросты, не слипается, течет по трубам и в 5-7 раз эффективнее простой воды для охлаждения.
Микрокристаллы льда «ледяная кровь» хорошо проникают в маленькие кровеносные сосуды без вреда для клеткок. При остановке сердца время для спасения пострадавшего теоретически может увеличиться с 10 до 45 минут.
Д. Пайк предложил добавить в лед опилки и из этого композита (пайкерита) сделать… авианосец.
Чуток копнув, я узнал, насколько глубока ледяная кроличья нора.
Первопроходец в исследовании различных типов льда — Перси Уильямс Бриджмен, нобелевский лауреат по физике в 1946, он работал с высокими давлениями (до 10 ГПа), открыл/описал в 1912 году 5-6 видов льда.
«Правила льда»
Шесть возможных молекулярных ориентаций центральной молекулы воды в пентамере Вальрафена.
Эксперименты с величиной и скоростью изменения температуры и давления, а так же хитрости с графеном позволяют играться со структурой и ориентацией протонов, что порождает 19 экспериментально полученных и несколько теоретических видов льда.
Фазовая диаграмма и структуры льда.
Сводная таблица 19 видов льда.
Лёд 0
Теоретическая структура. Лед-0 может получиться при кристаллизации льда Iси льда Ih из переохлажденной воды.
Аморфный лёд
Фазовая диаграмма аморфных льдов и жидкой воды.
Лёд-Iaили LDA (Low-density amorphous ice)
Если жидкую воду охладить со скоростью порядка 1 000 000 К в секунду, то молекулы не успевают сформировать кристаллическую решётку и получается аморфный лед низкой плотности, («сверхохлаждённая стекловидная вода», HGW). Второй способ — сконденсировать водяной пар на сильно охлажденной подложке («аморфная твёрдая вода», ASW).
Лёд-Ia или HDA (High-density amorphous ice)
Аморфный лёд высокой плотности можно получить сдавливая лёд «обычный» Ih при температурах ниже 140 К.
VHDA (Very-high density amorphous ice)
Аморфный лёд очень высокой плотности (2001) получают нагревом HDA до 160 К при давлении 1-2 ГПа.
Интересное видео, как лёд из одной фазы тает в другую:
Лёд Ih
Обычный гексагональный (hexagon, поэтому Ih) кристаллический лёд. Почти весь лёд на Земле относится ко льду Ih, и лишь малая часть — ко льду Iс (сubic).
Лёд Iс (1987)
Ромбовидное расположение воды во льду Iс
Лёд-Isd
Кстати, лёд Isd был «открыт» при наблюдении за солнечным гало во время ледяных игл/«алмазной пыли»:
Треугольная снежинка из Isd
Лёд 2 (1900)
Получают лёд-II, сжимая лёд Ih при температурах от −83 °C до −63 °C (190—210 K) и давлении 300 МПа, или путём декомпрессии льда V при температуре −35 °C (238 K). При нагреве лёд-II преобразуется в лёд-III.
Предполагают, что «ледяные луны» например, Ганимед, могут быть изо льда-II.
Лёд 3
Можно получить при охлаждении воды до −23 °C (250 K) и давлении 300 МПа.
Лёд-III — наиболее просто получаемый и доступный для исследований лёд высокого давления. Впервые он был получен из обыкновенного льда при температуре −22 °C (температура тройной точки лёд Ih — лёд III — вода) путём повышения давления до 210 МПа
Лёд 4
Получают медленным нагревом (0,4 K/мин) аморфного льда высокой плотности от температуры 145 К при постоянном давлении 0,81 ГПа.
Лёд 5
Лёд-V производят охлаждением воды до 253 K (−20 °C) при давлении 500 МПа. Структура льда-V — самая сложная из всех фаз льда. Лёд V тает при 50 °С.
Лёд 6
Получают при охлаждении воды до −3 °C (270 K) и давлении 1,1 ГПа. В нём проявляется дебаевская релаксация. Лёд VI тает при температуре 81 ºС (355 K) при 2,216 ГПа и при температуре около 0 ºС при 0,6 ГПа.
Монокристалл льда VI
Кристаллизация воды в тетрагональный лёд VI при комнатной температуре и давлении 0.9 ГПа.
Рост кристалла при трапецеидальном давлении.
Рост кристалла при синусоидальном давлении.
Лёд 7 (1969)
Самый неупорядоченный лёд, в нем не только атомы водорода, но и атомы кислорода не упорядочены.
Можно получить из воды под давлением 3 ГПа при охлаждении до комнатной температуры. Так же получается изо льда VI при увеличении давления при комнатной температуре.
Лёд 8
Упорядоченная версия льда-VII, в котором водород зафиксирован. Получается изо льда-VII при его охлаждении ниже 5 °C.
Лёд 9 (1973)
Лёд-IX — метастабильная форма твёрдой воды при температурах ниже 140 K и давлении 200-400 МПа. Получается изо льда III при охлаждении.
Лёд 10 (1984)
Симметричный лёд с упорядоченным расположением протонов. Образуется при давлениях около 70 ГПа.
Структура льда-X (слева верх) и предсказанные вариации Pbcm, Pbca, Cmcm.
Лёд 11 (1972)
Лёд-XI — это самая устойчивая конфигурация льда Ih с упорядоченной ориентацией протонов. Является сегнетоэлектриком (спонтанная поляризация, которую можно менять внешним электрическим полем).
Лёд 12 (2003)
Получается охлаждением воды до −13 °C (260 K) при давлении 0,55 ГПа. Так же лёд-XII можно получить изо льда Ih при температуре 77 K быстрым сжатием 1 ГПа/мин или нагреть аморфного льда высокой плотности до 183 К при давлении 0,8-1,6 ГПа.
Лед 13
Протонно-упорядоченная вариация льда-V. Получается при охлаждении воды до 130K при давлении 500 МПа.
Лёд 14 (2006)
Модификация льда-XII, где протоны расположены упорядоченно. Образуется при заморозке воды при температуре 118 K и давлении 1,2 ГПа.
Лед 15 (2009)
Лёд-XV — форма льда-VI с упорядоченными протонами, получается при охлаждении воды до 130 К при давлении 1 ГПа.
а) фазовая диаграмма льда с некоторыми маршрутами, используемыми для изучения упорядоченной формы льда и б) как молекула воды изменяется при переходе от неупорядоченной формы льда к упорядоченной.
Лёд 16 (2014)
Фазовая диаграмма воды, расширенная до отрицательных давлений.
Лёд 17 (2015)
Квадратный лед получается если зажать воду между двумя слоями графена (1 нанометр) при комнатной температуре (Андрей Гейм подсчитал, что давление там примерно 10 000 атмосфер). Возможно, встречается в природе в трещинах камней и почвы.
Лёд 18 (2019)
Супер-ионный лёд в четыре раза плотнее обычного льда и обладает электропроводимостью.
Лед-XVIII или суперионная вода может существовать при очень высоких давлениях 50-100 ГПа (удар лазерного импульса в ячейке с алмазными наковальнями) и температуре. Молекулы распадаются на ионы. Ионы кислорода формируют гранецентрированную кубическую решетку, а ионы водорода хаотично диффундируют внутри нее.
Фазовая диаграмма супер-ионного льда: объёмно-центрированный ионный лёд (синий), гранецентрированный/плотноупакованный (зелёный) и ионный лёд P21/c. Серый — кристаллический лед, жёлтый — область ионной жидкости.
Лед 19 (2021)
Различия в дифракционных картинах и строении кристаллической решетки льда-VI и льда-XIX
Если ко льду-VI применить давление от 0,88 до 2,20 гигапаскалей, то образуется лед-XV, и новый лед-XIX. Если проанализировать диэлектрическую проницаемость и нейтронную дифракцию, то придем к выводу о самостоятельности новой фазы.
До какой температуры можно охладить лед
Устойчивость льда – это многофакторный феномен, зависящий от многих факторов, которые нужно учитывать при расчётах:
ТВЕРДОСТЬ ЛЬДА. Способность льда оказывать сопротивление проникновению другого тела, не получающего остаточных деформаций. Определяется как отношение действующей нагрузки Р к поверхности образовавшейся вмятины S. Твердость Н = P/S является средним значением давления во вмятине. В зависимости от температуры льда и времени приложения нагрузки (короткому времени соответствует динамическая твердость, длительному – статическая твердость) значения Н могут различаться более чем на порядок.
ТЕКСТУРА ЛЬДА. Особенность строения льда, обусловленная пространственными расположениями воздушных, минеральных и органических включений.
С учетом воздушных включений лед подразделяется на монолитный (лишенный видимых включений) и пористый (с наличием включений, которые могут иметь равномерное, слоистое и вертикально-волокнистое распределение).
По размеру включений лед подразделяется на мелкопузыристый (включения менее 0,2 мм), среднепузыристый (включения от 0,2 до 0,5 мм), крупнопузыристый (включения от 0,5 до 1,0 мм), крупно-полостной (включения более 1,0 мм).
Форма включений бывает овальная, трубчатая, ветвистая и трансформирующаяся. По происхождению включения подразделяются на первичные (аутогенные), вторичные (ксеногенные) и с нарушенной текстурой (катакластические).
ТЕМПЕРАТУРА ПЛАВЛЕНИЯ ЛЬДА. Температура, при которой происходит плавление льда при постоянном внешнем давлении. Плавление морского льда происходит не при определенной температуре, как у пресного льда, а непрерывно, начиная с момента, когда температура ниже 0°С до температуры замерзания морской воды данной солености.
Ход температуры во льду во времени при подводе к нему теплоты
Плавление льда при атмосферном давлении происходит при температуре 0,01°С (в практических расчетах принимают 0°С). Количество теплоты, которое необходимо сообщить 1 кг льда, находящемуся при температуре плавления, для превращения его в воду, называют удельной теплотой плавления Lпл. Удельная теплота плавления пресноводного льда при нормальных условиях равна удельной теплоте кристаллизации воды 33,3·104 Дж/кг.
ТЕМПЕРАТУРОПРОВОДНОСТЬ ЛЬДА (КОЭФФИЦИЕНТ ТЕМПЕРАТУРОПРОВОДНОСТИ). Параметр, характеризующий скорость изменения температуры льда в нестационарных тепловых процессах. Коэффициент температуропроводности льда
где Cp – удельная теплоемкость льда при постоянном давлении, ρ – плотность льда, λ- коэффициент теплопроводности, численно равен повышению температуры единицы объема льда в результате теплового потока, соответствующего коэффициенту теплопроводности Cp.
ТЕНЗОР ДЕФОРМАЦИИ ЛЬДА. Совокупность деформаций бесконечно малого параллелепипеда льда, выделенного около данной точки. Представляет собой симметричный тензор 2-го ранга
Деформированное состояние элемента льда считается известным, если известны компоненты тензора деформации льда.
ТЕОРЕТИЧЕСКАЯ ПРОЧНОСТЬ ЛЬДА. Свойство льда, которое характеризуется расчетным значением напряжения, при котором мог бы произойти одновременный разрыв всех межатомных связей на поверхности разрыва. Как и у других твердых тел, оценивается значением 0,1 Е, где Е – модуль Юнга льда.
Обычно фактические значения прочности на несколько порядков ниже теоретических. Причина низкой прочности льда – неравномерное распределение внутренних напряжений; межатомные связи нагружены неодинаково, а в атомной структуре тел имеются слабые места.
При сложении одноименных внешних и внутренних напряжений возникают локальные перенапряжения, которые могут достичь значений теоретической прочности, приводя к разрыву межатомных связей. В слабых местах структуры под действием больших локальных напряжений разрыв межатомных связей происходит очень легко-так зарождаются разрывы сплошности тела. Рост и слияние разрывов сплошности образует макроскопическую трещину, развитие которой приводит к разрушению тела. Теоретическую прочность также называют идеальной прочностью, плотностью сил когезии (т. е. сил молекулярного взаимодействия частей одного и того же тела) или просто когезией, которая может быть охарактеризована теплотой (работой) испарения.
ТЕПЛОЕМКОСТЬ ЛЬДА. Одна из основных термодинамических характеристик льда, отражающая степень его нагрева в результате количества теплоты, полученной льдом. В практических расчетах обычно используют удельную теплоемкость льда, понимая под этим количество теплоты, которое необходимо сообщить единице массы льда, чтобы повысить его температуру на 1 К. Теплоемкость пресноводного льда уменьшается с понижением температуры (от 2,12 кДж/(кг*К) при 0°С), стремясь к нулю при О К.
ТЕПЛОПРОВОДНОСТЬ ЛЬДА (КОЭФФИЦИЕНТ ТЕПЛОПРОВОДНОСТИ). Величина, характеризующая процесс переноса тепловой энергии в неравномерно нагретом льду, приводящий к выравниванию температуры. Теплопроводность является коэффициентом пропорциональности между плотностью теплового потока q и градиентом температуры Т, входящих в известное уравнение
Теплопроводность льда численно равна плотности теплового потока при разности температуры 1К на единицу расстояния. С понижением температуры теплопроводность возрастает. Согласно теоретическим расчетам и многочисленным экспериментальным данным, при температуре
0°С теплопроводность пресноводного льда равна
ТЕРМИЧЕСКОЕ РАЗРУШЕНИЕ. Разрушение ледяного покрова вследствие его таяния при повышении температуры воздуха. Термическое разрушение уменьшает прочность льда, изменяет его структуру и текстуру, сокращает горизонтальные размеры и др.
Внешними проявлениями термического разрушения ледяного покрова являются взлом и дробление льдов, фиксируемые следующими сроками их появления: дата начала весеннего взлома (день, когда произошел откол части припая, день появления первых признаков таяния и снижения его прочности); дата первой весенней подвижки припая (день, когда видимая площадь припая (за исключением его подошвы), расчлененного большим количеством трещин, испытала горизонтальный сдвиг, сохранив при этом взаимное положение блоков льда; дата окончательного разрушения припая (день, когда произошел распад припая на блоки льда, которые сместились относительно друг друга, понизив тем самым сплоченность льда).
ТРЕЩИНЫ В ЛЕДЯНОМ ПОКРОВЕ. Нарушения сплошности ледяного покрова, представляющие собой зону, в которой прекращается взаимодействие между ионами и атомами кристаллической решетки на разных ее сторонах. Образуются в результате разрыва или разлома, как результат превышения прочности льда на растяжение, сжатие, изгиб и сдвиг. Трещины в ледяном покрове подразделяются по генетическим и морфологическим признакам.
По морфологическим признакам трещины подразделяются на следующие виды.
По форме в плане их простирания – прямые (прямолинейные, клиновидные, щелевидные), изогнутые (дугообразные, кулисообразные, круговые), изломанные (зигзагообразные, синусоидные, циклоидные) (фото 38).
По форме разреза краев трещин-гладкие, неровные, зазубренные.
По длине-внутриблоковые (длиной до 5 км), межблоковые (длиной до 100 км), магистральные (длиной в несколько сотен километров).
По величине раскрытия-узкие (шириной до 5 м), средние (шириной от 5 до 15 м), широкие (шириной до 50 м).
По глубине проникновения – зияющие, нераскрывшиеся.
ТЕПЛОФИЗИЧЕСКИЕ (ТЕРМИЧЕСКИЕ) СВОЙСТВА ЛЬДА.
Каждому известно, что вода может находиться в природе в трех агрегатных состояниях – твердом, жидком и газообразном. При плавлении происходит превращение твердого льда в жидкость, а при дальнейшем нагревании жидкость испаряется, образуя водяной пар. Каковы же условия плавления, кристаллизации, испарения и конденсации воды? При какой температуре тает лед или образуется пар? Об этом мы поговорим в данной статье.
Вода на Земле
Нельзя сказать, что водяной пар и лед редко встречаются в повседневной жизни. Однако наиболее распространенным является именно жидкое состояние – обычная вода. Специалисты выяснили, что на нашей планете находится более 1 млрд кубических километров воды. Однако не более 3 млн км3 воды принадлежат пресным водоемам. Достаточно большое количество пресной воды «покоится» в ледниках (около 30 млн кубических километров). Однако растопить лед таких огромных глыб далеко не просто. Остальная же вода соленая, принадлежащая морям Мирового океана.
Вода окружает современного человека повсюду, во время большинства ежедневных процедур. Многие считают, что запасы воды неиссякаемы, и человечество сможет всегда использовать ресурсы гидросферы Земли. Однако это далеко не так. Водные ресурсы нашей планеты постепенно истощаются, и уже через несколько сотен лет пресной воды на Земле может не остаться вовсе. Поэтому абсолютно каждому человеку нужно бережно относиться к пресной воде и экономить ее. Ведь даже в наше время существуют государства, в которых запасы воды катастрофически малы.
Свойства воды
Прежде чем говорить о температуре таяния льда, стоит рассмотреть основные свойства этой уникальной жидкости.
Итак, воде присущи следующие свойства:
В этом списке представлены основные свойства воды. Теперь разберемся, каковы особенности твердого агрегатного состояния этого вещества, и при какой температуре тает лед.
Снег и лед
Лед – это твердое кристаллическое вещество, которое имеет достаточно неустойчивую структуру. Он, как и вода, прозрачен, не имеет цвета и запаха. Также лед обладает такими свойствами, как хрупкость и скользкость; он холодный на ощупь.
Снег также представляет собой замерзшую воду, однако обладает рыхлой структурой и имеет белый цвет. Именно снег каждый год выпадает в большинстве стран мира.
Как снег, так и лед – крайне неустойчивые вещества. Чтобы растопить лед, не нужно прикладывать особых усилий. Когда же он начинает таять?
Плавление льда
В природе твердый лед существует только при температуре 0 °C и ниже. Если же температура окружающей среды поднимается и становится больше 0 °C, лед начинает таять.
При температуре таяния льда, при 0 °C, происходит и другой процесс – замерзание, или кристаллизация, жидкой воды.
Данный процесс можно наблюдать всем жителям умеренно континентального климата. Зимой, когда температура на улице опускается ниже 0 °C, достаточно часто выпадает снег, который не тает. А жидкая вода, находившаяся на улицах, замерзает, превращаясь в твердый снег или лед. Весной же можно увидеть обратный процесс. Температура окружающей среды поднимается, поэтому лед и снег тают, образуя многочисленные лужи и грязь, которую можно считать единственным минусом весеннего потепления.
Таким образом, можно сделать вывод, что, при какой температуре начинает таять лед, при такой же температуре начинается и процесс замерзания воды.
Количество теплоты
В такой науке, как физика, часто используется понятие количества теплоты. Данная величина показывает количество энергии, необходимой для нагревания, плавления, кристаллизации, кипения, испарения или конденсации различных веществ. Причем каждый из перечисленных процессов имеет свои особенности. Поговорим о том, какое количество теплоты для нагревания льда требуется в обычных условиях.
Чтобы нагреть лед, нужно сначала его растопить. Для этого необходимо количество теплоты, нужное для плавления твердого вещества. Теплота равняется произведению массы льда на удельную теплоту его плавления (330-345 тысяч Джоулей/кг) и выражается в Джоулях. Допустим, что нам дано 2 кг твердого льда. Таким образом, чтобы его растопить, нам понадобится: 2 кг * 340 кДж/кг = 680 кДж.
После этого нам необходимо нагреть образовавшуюся воду. Количество теплоты для данного процесса рассчитать будет немного сложнее. Для этого нужно знать начальную и конечную температуру нагреваемой воды.
Итак, допустим, что нам требуется нагреть получившуюся в результате плавления льда воду на 50 °C. То есть разница начальной и конечной температуры = 50 °C (начальная температура воды – 0 °C). Тогда следует умножить разность температур на массу воды и на ее удельную теплоемкость, которая равняется 4 200 Дж*кг/°C. То есть количество теплоты, необходимое для нагревания воды, = 2 кг * 50 °C * 4 200 Дж*кг/°C = 420 кДж.
Тогда получаем, что для плавления льда и последующего нагревания получившейся воды нам потребуется: 680 000 Дж + 420 000 Дж = 1 100 000 Джоулей, или 1,1 Мегаджоуль.
Зная, при какой температуре тает лед, можно решить множество непростых задач по физике или химии.
В заключение
Итак, в данной статье мы узнали некоторые факты о воде и о двух ее агрегатных состояниях – твердом и жидком. Водяной пар, однако, представляет собой не менее интересный объект для изучения. Например, в нашей атмосфере содержится приблизительно 25*1016 кубических метров водяного пара. К тому же, в отличие от замерзания, испарение воды происходит при любой температуре и ускоряется при ее нагревании или при наличии ветра.
Мы узнали, при какой температуре тает лед и замерзает жидкая вода. Такие факты всегда пригодятся нам в повседневной жизни, так как вода окружает нас повсюду. Важно всегда помнить о том, что вода, в особенности пресная, является иссякаемым ресурсом Земли и нуждается в бережном к ней отношении.
Ледяной покров уже на протяжении долгих лет используется в качестве игровой площадки для такого популярного вида спорта, как хоккей, а также для других дисциплин, которые актуальны во время проведения зимних олимпийских соревнований, – фигурного катания, керлинга, шорт-трека.
История
Искусственный лед стали применять на катках еще в 70-е годы XIX века. Образцом для массового строительства катков в европейских и североамериканских государствах стала лондонская арена. Тогда основная конструкция состояла из бетонного основания, на котором располагались трубки, наполненные холодоносителем. Лед здесь образовывался после подачи и заморозки воды, налитой на трубки. В начале ХХ века в Кливленде состоялась презентация первого ледового поля, особенностью которого было использование бетонной конструкции с расположенным внутри трубопроводом. Изначально в холодильных системах для катков применялся хладагент на основе сернистого ангидрида. Через некоторое время разработчики холодильного оборудования стали использовать в качестве холодоносителя аммиак.
Технологический прогресс стал причиной серьезных изменений в создании холодильных установок, однако все производители до сих пор руководствуются принципами, на основании которых были построены первые конструкции.
Отличие систем образования льда
Современное ледовое покрытие образуется благодаря матам – наборам трубок с постоянно циркулирующей охлаждающей жидкостью. В результате лед появляется за счет промежуточного антифриза, а не хладагента, содержащегося в холодильной установке. Катки старого образца замерзали благодаря воде и глицерину, которые превращались в однородную смесь. В данное время роль антифриза могут выполнять:
Раньше для изготовления трубок охладительной системы использовалась медь, а сейчас расходным материалом является сталь или пластик. Такие трубки расположены в песчаном или бетонном основании.
Основание ледовой арены в разрезе
Качество покрытия
Чтобы спортсмены могли максимально использовать свои функциональные возможности, качество ледового покрытия должно находиться на высочайшем уровне. Раньше это было невозможно, так как катание на открытом воздушном пространстве осуществлялось под воздействием изменчивой температуры, что негативно влияло на качество льда. Со временем исследователи вывели оптимальные условия для катания:
В закрытых ледовых комплексах, на лед негативно воздействуют воздушные массы, проникающие в помещение во время теплой погоды. Также высокую теплоотдачу обеспечивают источники света и наблюдающая за событиями аудитория. Помимо этого, от зрителей исходит влага, из-за которой нарушается зеркало льда. Чтобы обеспечить высокое качество ледовой поверхности и комфортные условия на трибунах, современные спортивные площадки оснащаются сложными системами кондиционирования. Качественные характеристики ледового покрытия зависят и от жесткости воды. Последняя должна в минимальном количестве содержать растворенные соли. С этой целью вода подвергается смягчению и деионизации.
Подробнее о температурах
При подготовке ледовой арены следует обеспечить такой температурный режим, который наилучшим образом подходит для проведения мероприятия. К примеру, фигурное катание проводится при температуре льда в пределах 2-3 градусов Цельсия со знаком минус. Повышенная мягкость льда способствует лучшему сцеплению коньков с поверхностью. Также это необходимо для уменьшения разрушения ледяного покрова.
Подогрев и заморозка
Использование системы подогрева грунта в спортивных сооружениях является необходимым, так как из-за высокой холодопроизводительности снижается температура бетонного основания. В итоге это может стать причиной замерзания грунта, изменчивое состояние которого негативно влияет на фундамент. В случае всесезонного использования ледового катка, ниже его основания размещают трубки на расстоянии 0,3-0,6 метра. Благодаря отопительной системе температура грунта постоянно составляет около 3 градусов Цельсия.
Поверх грунта устанавливается теплоизоляция. Ее компоненты стыкуются и между ними пропадают щели. На следующем этапе осуществляется монтаж трубных матов. Основой для укладки трубок является арматурная сетка. В некоторых случаях сетку заменяют песчаным слоем. После этого конструкцию бетонируют. Для производства трубок системы подогрева используют термостойкие полимеры. Подобные трубки отличаются тонкими стенками и монтируются на расстоянии около 10 сантиметров.
Подключение системы охлаждения
Чтобы привести хоккейную арену в полную готовность, необходимо 30-60 кубических метров воды. Замораживание происходит поэтапно, с целью образования многослойного льда. Образование первых слоев происходит в результате распыления воды. Следующей процедурой является окрашивание поверхности в белый цвет, чтобы хоккеистам было легче обнаружить шайбу во время игры. После этого требуется образование еще одного слоя льда и нанесение разметки. На завершающей стадии появляется главный ледяной покров.
Устранение дефектов поверхности
Разрушение ледового пространства происходит под воздействием лезвий коньков. Для выравнивания поверхности применяются ресурфейсеры – специальные комбайны, которые корректируют лед в свободное от катания время.
Данный процесс заключается в следующем:
Калькуляция энергозатрат
Самой трудоемкой процедурой в образовании ледовой поверхности является подготовка льда. Компания Johnson Controls опубликовала информацию, что на подготовку льда уходит 57 процентов энергетических затрат, на обеспечение трибун электричеством – 14 процентов, на освещение катка – 9 процентов, на осушение и вентиляцию – 12 процентов, на дополнительное освещение – 8 процентов. По этой причине разработчики ледовых арен делают основной акцент на энергетическую эффективность. К примеру, во время последней Олимпиады в Сочи Большая ледовая арена была оборудована 3-мя высокоэффективными холодильными установками YORK, которые изготовила корпорация Johnson Controls. Мощность такого оборудования составляет 529 киловатт. Также оно имеет электрический двигатель, отдача которого равна 400 киловаттам. Что касается холодильного коэффициента компрессора, он равен 1,32.
Чтобы грунт не промерзал, под бетонную плиту устанавливают трубки, толщина которых составляет 37 сантиметров. В трубках находится пропиленгликоль.
Система кондиционирования воздуха сочинской арены состоит из 4-х холодильных машин YORK, мощность охлаждения которых составляет 2,3 тысячи киловатт, в то время как мощность электродвигателя равна 516 киловаттам. Холодильный коэффициент нагнетателя равен 4,45.
Конденсация холодильного оборудования позволяет утилизировать тепло, благодаря которому удовлетворяются технологические потребности сооружения (таяние льда, вентиляция, горячее водоснабжение).
На основе материалов из журналов “ON”, “Мир Климата”