На что делится 155
155 (число)
сто пятьдесят пять
Содержание
Математические свойства
Гематрия
Абджадия
Церковнославянская изопсефия
Библеистика
Примечания
Ссылки
Полезное
Смотреть что такое «155 (число)» в других словарях:
155 (значения) — 155 (число) 155 год. 155 год до н. э. 155 й меридиан. 155 й истребительный авиационный полк воинское подразделение вооружённых СССР в Великой Отечественной войне. 155 й отдельный батальон связи воинское подразделение в вооружённых силах СССР во… … Википедия
СУ-155 — ЗАО «СУ 155» Тип Закрытое акционерное общество Год … Википедия
Полупростое число — (или бипростое число) число, представимое в виде произведения двух простых чисел. Примеры Последовательность полупростых чисел начинается так: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 49, 51, 55, 57, 58, 62, 65, 69, 74, …… … Википедия
100 (число) — 100 сто 97 · 98 · 99 · 100 · 101 · 102 · 103 70 · 80 · 90 · 100 · 110 · 120 · 130 200 · 100 · 0 · 100 · 200 · 300 · 400 Факторизация: 2×2×5×5 … Википедия
156 (число) — 156 сто пятьдесят шесть 153 · 154 · 155 · 156 · 157 · 158 · 159 Факторизация: Римская запись: CLVI Двоичное: 10011100 Восьмеричное: 234 … Википедия
10 (число) — У этого термина существуют и другие значения, см. 10 (значения). 10 десять 7 · 8 · 9 · 10 · 11 · 12 · 13 20 · 10 · 0 · 10 · 20 · 30 · 40 Факторизация: 2×5 Римская запись: X Двоичное … Википедия
154 (число) — 154 сто пятьдесят четыре 151 · 152 · 153 · 154 · 155 · 156 · 157 Факторизация: Римская запись: CLIV Двоичное: 10011010 Восьмеричное: 232 … Википедия
Центрированное квадратное число — – это центрированное полигональное число, которое представляет квадрат с точкой в центре и все остальные окружающие точки находятся на квадратных слоях. Таким образом, каждое центрированное квадратное число равно числу точек внутри данного… … Википедия
NGC 155 — Галактика История исследования Открыватель Льюис Свифт Дата открытия 1 сентября 1886 Обозначения NGC 155, MCG 2 2 55, NPM1G 11.0022, PGC 2076 … Википедия
394 (число) — 394 триста девяносто четыре 391 · 392 · 393 · 394 · 395 · 396 · 397 Факторизация: Римская запись: CCCXCIV Двоичное: 110001010 Восьмеричное: 612 … Википедия
Информация о числах
Свойства и характеристики одного числа
Все делители числа, сумма и произведение цифр, двоичный вид, разложение на простые множители.
Свойства пары чисел
Наименьшее общее кратное, наибольший общий делитель, сумма, разность и произведение чисел.
Сейчас изучают числа:
Число 155
Сто пятьдесят пять
RGB(0, 0, 155) или #00009B
(возможное основание)
женственность, чувствительность, интуиция, близость, поддержка, доверие, сотрудничество, мир, дипломатичность
Описание числа 155
Натуральное действительное трёхзначное нечетное число 155 – составное число. Является полупростым число. Произведение цифр числа: 25. 4 — количество делителей у числа. Обратное число к 155 – это 0.0064516129032258064.
Факторизация числа 155: 5 * 31.
Число 155 — не число Фибоначчи.
Простые и составные числа
§ 5. Простые и составные числа.
Ранее рассматривались некоторые связи, отношения и операции между числами. Рассмотрим структуру самих чисел.
Определение 1. Натуральное число 1 называется простым, если оно не имеет делителей, отличных от 1 и a , т. е. оно имеет только два различных делителя 1 и a.
Натуральное число a называют составным, если оно имеет делители, отличные от 1 и a, т. е. имеет более двух различных делителей.
Число 1 не является ни простым, ни составным.
Примеры: простые – 2, 3, 5, 7, 11, 13, 17, 19, …
составные – 4, 6, 8, 9, 10, …
Свойства простых чисел.
10. Если произведение нескольких натуральных чисел делится на простое число p, то по крайней мере один из сомножителей делится на p.
Доказательство.
20. Наименьший отличный от единицы делитель натурального числа является простым числом.
Доказательство. Пусть делится на
. Предположим, что
— составное число
=
и
. Получили противоречие.
30. Наименьший отличный от единицы делитель составного числа не больше, чем .
Доказательство. Пусть является делителем a,
Причем, , перемножая эти два выражения, получаем
, т. е.
.
Следствие. 1). Всякое составное число a имеет по крайней мере один простой делитель не более .
2). Если положительное число не делится ни на одно простое число, не более
, то оно простое (это позволяет определить простоту числа, простейший критерий на простоту).
Признаки делимости чисел
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Что такое «признак делимости»
Признак делимости числа — это такая особенность числа, которая еще до выполнения деления позволяет определить, кратно ли число делителю.
Истинный путь джедая, чтобы зря не пыхтеть над числами, которые в конечном итоге не делятся.
Однозначные, двузначные и трехзначные числа
Однозначное число — это такое число, в составе которого один знак (одна цифра). Девять однозначных натуральных чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9.
Двузначные числа — такие, в составе которых два знака (две цифры). Цифры могут повторяться или быть различными.
Трехзначные числа — числа, в составе которых три знака (три цифры).
Чётные и нечётные числа
Число называют четным тогда, когда оно делится на два без остатка. А нечетные числа — те, что на два без остатка не делятся. Все просто!
Признаки делимости чисел
Признак делимости на 2. Сразу можно сказать, что число делится на 2, если последняя цифра четная.
Признак делимости на 3. Сумма цифр числа должна делиться на 3.
Признаки делимости на 4. Число делится на 4, если две последние цифры — 0 или если они образуют цифру, которая делится на 4.
Признаки делимости на 5. Число делится на 5, если заканчивается на 0 или 5.
Признак делимости на 6. На 6 делятся те числа, которые могут одновременно делится на 2 и на 3.
Признаки делимости на 8. Число делится на 8, если три последних цифры — 0 или если они образуют число, которое делится на 8.
Признак делимости на 9. Число делится на 9, если сумма цифр делится на 9.
Признаки делимости на 10, 100. Числа, которые заканчиваются на 0, 00, 000 делятся на 10, 100, 1000 и так далее.
Делитель и кратное в математике
Что такое делители и кратные числа
Деление — математическое действие, которое определяет, сколько раз одно число содержится в другом. Обратной операцией является умножение.
Выделяют следующие компоненты деления:
Делимое — число, которое делят на несколько частей.
Делитель — число, которое показывает, на сколько частей нужно разделить делимое.
Частное — число, которое является результатом деления.
Умножение частного на делитель дает делимое.
Чтобы получить делитель, нужно делимое разделить на частное.
Д е л и м о е = ч а с т н о е * д е л и т е л ь Д е л и т е л ь = д е л и м о е / ч а с т н о е
Например, нужно поровну разделить 16 мандаринов между двумя детьми. Для этого 16:2=8. Таким образом, каждый ребенок получит по 8 мандаринов.
16 в этом примере является делимым, 2 — делителем, 8 — частным. Шестнадцать поделили на две части, по восемь в каждой. Или восемь содержится в 16 два раза. Или 2 содержится в 16 восемь раз. Деление прошло без остатка — нацело. Тогда число 2 является делителем числа 16.
Делителем числа a называется такое число b, на которое a делится нацело.
Например, 9 : 4 = 2 (остаток 5 ).
В примере 9 — делимое, 4 — делитель, 2 — неполное частное, 5 — остаток.
Остаток от деления — число, которое меньше делителя. Образуется при делении с остатком. Значит, в примере 9 : 4 = 2 (остаток 5 ) — число 4 не является делителем числа 9.
Задание: найдите такую пару делителей числа 144, если один из делителей равен 2.
Пусть неизвестный делитель равен x. Чтобы найти еще один делитель, если какой-то известен, нужно данное нам число разделить на известный делитель.
Тогда представим решение данной задачи в виде уравнения:
72 — целое число, без остатка.
Произведение делителей должно дать в результате 144:
72 * 2 = 144 — верно, значит, 72 — корень уравнения и делитель 144.
Ответ: числа 2 и 72 — делители 144.
Число называют кратным, если оно делится на данное число нацело, без остатка.
Например, 15:3 нацело.
Тогда число 15 является кратным 3.
Слово «кратно» синонимично слову «делится».
Фразу «15 кратно 3» можно в уме заменить на «15 делится на 3 нацело».
Основные понятия и определения
Делитель — это число, на которое данное число делится нацело. Делитель всегда меньше или равен числу.
Делится нацело = без остатка.
Наименьшим делителем любого числа является единица.
Наибольшим делителем числа является само число.
Делителем нуля будет любое число, но сам 0 делителем не будет.
При делении нуля на любое число получаем 0. А делить на ноль нельзя.
У единицы только один делитель — единица.
Другие числа, кроме 1, имеют не меньше двух делителей.
Кратное — число, которое делится на данное число нацело. Всегда больше или равно числу.
Наименьшее кратное числа является равным самому числу.
Наибольшее кратное подобрать нельзя, потому что ряд натуральных чисел бесконечен. У любого натурального числа бесконечное множество кратных.
Ноль является кратным для любого числа. При умножении на ноль всегда получается ноль.
Когда одно число делится нацело на другое, то первое число — кратное второго, а второе — делитель первого.
Чем отличаются друг от друга, как найти
Делитель отличается от кратного тем, что:
Чтобы найти делители числа, нужно данное число разложить на множители.
Разложить на множители — представить число в виде произведения целых чисел.
Чтобы проверить, является ли одно число делителем другого, нужно разделить число на данное нам.
Для нахождения кратного числа заданному числу, нужно это число последовательно умножать на натуральные числа. Каждое полученное число будет кратно — будет делиться — заданному.
Делители и кратные связаны между собой. Например, делителем числа 15 является 3 и число, кратное 3, равно 15.
Примеры решения задач
Необходимо найти делители числа 14.
Решить задание можно двумя способами.
Последовательно делим 14 на натуральные числа от 1 до 14. Помним, что делитель всегда меньше или равен заданному числу.
Выбираем такие числа в качестве делителя, при делении на которые мы не получили остаток: 1, 2, 7, 14.
Ответ: делители числа 14: 1, 2, 7, 14.
Представим 14 в виде произведения чисел:
Делителями будут множители, так как можем разделить 14 нацело на каждый из них.
Ответ: делители 14: 1, 2, 7, 14.
Найдите три числа, кратных 7.
Чтобы найти число, кратное данному, нужно это число умножить на любое натуральное число.
7 * 1 = 7 — семь кратно семи;
7 * 2 = 14 — 14 кратно 7;
7 * 3 = 21 — 21 кратно 7.
Ответ: числа, кратные 7: 7, 14, 21.
Самостоятельно проверьте, 225 кратно 3 или нет.
Чтобы проверить, кратно ли одно число другому, нужно разделить числа друг на друга.
75 — целое число, при делении нет остатка. Тогда 225 кратно 3.
Найдите любое число, делителями которого являются числа 7 и 8.
Самый простой способ, если в задании не оговорены еще какие-либо условия, просто перемножить эти делители:
- На что делится 154
- На что делится 156