На что делится 720
Информация о числах
Свойства и характеристики одного числа
Все делители числа, сумма и произведение цифр, двоичный вид, разложение на простые множители.
Свойства пары чисел
Наименьшее общее кратное, наибольший общий делитель, сумма, разность и произведение чисел.
Сейчас изучают числа:
Число 720
Семьсот двадцать
RGB(0, 2, 208) или #0002D0
(возможное основание)
доброжелательность, благородство, прощение, раскаяние, благодарность, исцеление, щедрость, великодушие
Описание числа 720
Действительное трёхзначное четное число 720 является составным. Сумма и произведение цифр: 9, 0. Делители: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720. И сумма этих делителей: 2418. 720 и 0.001388888888888889 являются взаимно обратными числами.
Факторизация этого числа: 2 * 2 * 2 * 2 * 3 * 3 * 5.
Число — не число Фибоначчи.
Число 720 в секундах это 12 минут ноль секунд. Нумерологическое значение числа 720 – цифра 9.
Нахождение всех делителей числа, число делителей числа
В данной статье мы поговорим о том, как найти все делители числа. Начнем с доказательства теоремы, с помощью которой можно задать вид всех делителей определенного числа. Далее возьмем примеры нахождения всех нужных делителей и покажем, как именно определить, сколько делителей имеет конкретное число. В последнем пункте подробно рассмотрим примеры задач на нахождение общих делителей нескольких чисел.
Как найти все делители числа
Сложнее определить все делители составного числа. Сформулируем теорему, которая лежит в основе данного действия.
Учитывая доказательство этой теоремы, мы можем сформировать схему нахождения всех положительных делителей данного числа.
Для этого нужно выполнить следующие действия:
Самым трудным в таком расчете является именно перебор всех комбинаций указанных значений. Разберем подробно решения нескольких задач, чтобы наглядно показать применение данной схемы на практике.
Решение
Для нахождения делителей удобно все полученные значения оформлять в виде таблицы:
Возьмем пример чуть сложнее: в нем при разложении числа получится не один, а два множителя.
Решение
Начнем с разложения данного числа на простые множители.
567 189 63 21 7 1 3 3 3 3 7
t 1 | t 2 | 3 t 1 · 7 t 2 |
0 | 0 | 3 0 · 7 0 = 1 |
0 | 1 | 3 0 · 7 1 = 7 |
1 | 0 | 3 1 · 7 0 = 3 |
1 | 1 | 3 1 · 7 1 = 21 |
2 | 0 | 3 2 · 7 0 = 9 |
2 | 1 | 3 2 · 7 1 = 63 |
3 | 0 | 3 3 · 7 0 = 27 |
3 | 1 | 3 3 · 7 1 = 189 |
4 | 0 | 3 4 · 7 0 = 81 |
4 | 1 | 3 4 · 7 1 = 567 |
Продолжим усложнять наши примеры – возьмем четырехзначное число.
Решение
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
0 | 0 | 0 | 0 | 2 0 · 3 0 · 5 0 · 13 0 = 1 |
0 | 0 | 0 | 1 | 2 0 · 3 0 · 5 0 · 13 1 = 13 |
0 | 0 | 1 | 0 | 2 0 · 3 0 · 5 1 · 13 0 = 5 |
0 | 0 | 1 | 1 | 2 0 · 3 0 · 5 1 · 13 1 = 65 |
0 | 0 | 2 | 0 | 2 0 · 3 0 · 5 2 · 13 0 = 25 |
0 | 0 | 2 | 1 | 2 0 · 3 0 · 5 2 · 13 1 = 325 |
0 | 1 | 0 | 0 | 2 0 · 3 1 · 5 0 · 13 0 = 3 |
0 | 1 | 0 | 1 | 2 0 · 3 1 · 5 0 · 13 1 = 39 |
0 | 1 | 1 | 0 | 2 0 · 3 1 · 5 1 · 13 0 = 15 |
0 | 1 | 1 | 1 | 2 0 · 3 1 · 5 1 · 13 1 = 195 |
0 | 1 | 2 | 0 | 2 0 · 3 1 · 5 2 · 13 0 = 75 |
0 | 1 | 2 | 1 | 2 0 · 3 1 · 5 2 · 13 1 = 975 |
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
1 | 0 | 0 | 0 | 2 1 · 3 0 · 5 0 · 13 0 = 2 |
1 | 0 | 0 | 1 | 2 1 · 3 0 · 5 0 · 13 1 = 26 |
1 | 0 | 1 | 0 | 2 1 · 3 0 · 5 1 · 13 0 = 10 |
1 | 0 | 1 | 1 | 2 1 · 3 0 · 5 1 · 13 1 = 130 |
1 | 0 | 2 | 0 | 2 1 · 3 0 · 5 2 · 13 0 = 50 |
1 | 0 | 2 | 1 | 2 1 · 3 0 · 5 2 · 13 1 = 650 |
1 | 1 | 0 | 0 | 2 1 · 3 1 · 5 0 · 13 0 = 6 |
1 | 1 | 0 | 1 | 2 1 · 3 1 · 5 0 · 13 1 = 78 |
1 | 1 | 1 | 0 | 2 1 · 3 1 · 5 1 · 13 0 = 30 |
1 | 1 | 1 | 1 | 2 1 · 3 1 · 5 1 · 13 1 = 390 |
1 | 1 | 2 | 0 | 2 1 · 3 1 · 5 2 · 13 0 = 150 |
1 | 1 | 2 | 1 | 2 1 · 3 1 · 5 2 · 13 1 = 1950 |
t 1 | t 2 | t 3 | t 4 | 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 |
2 | 0 | 0 | 0 | 2 2 · 3 0 · 5 0 · 13 0 = 4 |
2 | 0 | 0 | 1 | 2 2 · 3 0 · 5 0 · 13 1 = 52 |
2 | 0 | 1 | 0 | 2 2 · 3 0 · 5 1 · 13 0 = 20 |
2 | 0 | 1 | 1 | 2 2 · 3 0 · 5 1 · 13 1 = 260 |
2 | 0 | 2 | 0 | 2 2 · 3 0 · 5 2 · 13 0 = 100 |
2 | 1 | 0 | 1 | 2 2 · 3 0 · 5 2 · 13 1 = 1300 |
2 | 1 | 0 | 0 | 2 2 · 3 1 · 5 0 · 13 0 = 12 |
2 | 1 | 0 | 1 | 2 2 · 3 1 · 5 0 · 13 1 = 156 |
2 | 1 | 1 | 0 | 2 2 · 3 1 · 5 1 · 13 0 = 60 |
2 | 1 | 1 | 1 | 2 2 · 3 1 · 5 1 · 13 1 = 780 |
2 | 1 | 2 | 0 | 2 2 · 3 1 · 5 2 · 13 0 = 300 |
2 | 1 | 2 | 1 | 2 2 · 3 1 · 5 2 · 13 1 = 3900 |
Как определить количество делителей конкретного числа
Решение
Раскладываем число на множители.
84 42 21 7 1 2 2 3 7
Ответ: всего у 84 будет 24 делителя – 12 положительных и 12 отрицательных.
Как вычислить общие делители нескольких чисел
Зная свойства наибольшего общего делителя, можно утверждать, что количество делителей некоторого набора целых чисел будет совпадать с количеством делителей НОД тех же чисел. Это будет справедливо не только для двух чисел, но и для большего их количества. Следовательно, чтобы вычислить все общие делители нескольких чисел, надо определить их наибольший общий множитель и найти все его делители.
Разберем пару таких задач.
Решение
Для этого нам потребуется алгоритм Евклида:
Решение
Чтобы узнать количество этих чисел, нужно выяснить, сколько положительных делителей имеет НОД.
Ответ: у данных чисел шесть общих делителей.
- На что делится 720 без остатка
- На что делится 725