На что влияет разрядность микропроцессора
Разрядность процессора — копаем в суть
Здравствуйте мои дорогие читатели, и я продолжаю цикл наших бесед, посвященных сердцу любого компьютера. Сегодня предметом обсуждения будет разрядность процессора. Возможно, некоторые из вас и не обращали внимания на данный показатель, и даже успешно пользовались компьютером без этой информации. Но раз уж вы решили повысит уровень своих знаний, то давайте разберемся, что это такое, на что она влияет.
Для того чтобы максимально приблизится к пониманию процесса я считаю необходимым вспомнить некоторые понятия.
Информация в процессоре представлена в виде цифрового двоичного кода, который в свою очередь выглядит в виде серии импульсов с определенной последовательностью сигналов (есть напряжение –«1», нет – «0»). Один импульс – это бит информации.
Сигналы, поступают на транзисторы логических схем кристалла с определенной тактовой частотой. Если чип будет считывать отдельно каждый бит, то это будет очень долго и неудобно. Гораздо проще за один такт обработать один или несколько символов, представляющий в себе вполне конкретную информацию.
Чтобы процессору было удобнее оперировать данными, в нем специально выделяют регистры для записи объема информации, обрабатываемого ЦП за один такт. В каждом из них помещаться набор из 4, 8, 16, 32 или 64–х знаков кода, называемых «машинным словом».
Постараюсь описать этот процесс простыми словами и понятной аналогией. Это как учить читать ребенка, начавшего изучать алфавит. По буквам – долго и непонятно, а вот по слогам – проще. Причем, сначала малышу предлагают слова, специально разделенные на одно- двухбуквенные слоги. А когда он освоит этот навык – можно читать что-то посложнее, складывая слоги их трех-четырех букв.
Точно так же, инженеры в течение многих лет совершенствуют микропроцессоры, продолжая «обучать» их читать более длинные «машинные слова». Но для использования в технической документации такой термин не самый лучший вариант.
Поэтому величину, означающую размер блока информации, обрабатываемую CPU за один такт, назвали разрядность процессора. Этот параметр, так же как и «слово», измеряется в битах.
Прогресс разрядности процессоров
Самым первым серийным чипом стал 4-х разрядный Intel 4004, предназначенный исключительно для калькуляторов. С помощью комбинации из 4-х нулей или единиц можно было закодировать 2^4=16 символов. И этого с головой хватало для 10 цифр и 6-и знаков основных арифметических действий.
Я не зря привел пример с расчетом, чтобы показать, что в реальности, для эффективной работы ЦП в компьютерах, необходима большая разрядность. Ведь даже 8-и битные процессоры имеют существенные ограничения.
Поэтому чипмейкеры активно работали не только над технологией обработки кварцевых кристаллов, но и над микроархитектурой, представляющей собой систему взаимодействия отдельных компонентов процессора и обрабатываемых данных.
В итоге в 1978 году появился первый 16-и битный процессор 8086, работающей на архитектуре x86, которая оказалась весьма успешной, поскольку обладала огромными возможностями для постоянного совершенствования и доработки.
Ее третье поколение позволило в 1985 году создать 32-бинтный процессор Intel 80386. Работающий уже на архитектуре IA-32.
Прогресс не стоит на месте
Сама система x86 с начала своего существования регулярно получала всевозможные расширения, которые добавляли все новые возможности. А потребность в этом была постоянная: объемы обрабатываемых данных и размеры используемых файлов постоянно росли. И в решении сложных задач 32-разрядные процессоры уже были бессильны (блок объемом свыше 4 Гб в регистр ЦПУ уже не помещался).
«Интел» попыталась создать новую архитектуру IA-64 с обратной совместимостью, но скорость ее работы была неудовлетворительна.
Их прямые конкуренты, компания AMD, в решении этой проблемы достигли большего успеха. Они пошли проверенным путем. И в 2003 г ввели новое расширение для 32-битной архитектуры, назвав его AMD64.
Решение, реализованное в процессорах Opteron, Athlon 64 и Turion 64 оказалось настолько удачным, что Intel приобрели лицензию на набор управляющих инструкций. На базе этого уже создали свой продукт: архитектуру EM64T. Которая на сегодня используется во всех их процессорах.
Такие инновации позволили не только ускорить работу самого процессора. Но и дали возможность использовать шину памяти для перемещения файлов практически неограниченного объема.
Зная, что 64-разрядный процессор – это более прогрессивное решение, вы наверняка захотите выяснить, является ли таковым CPU, установленный на вашем компьютере. Я подскажу вам, где посмотреть эту информацию.
На что влияет разрядность ОС и процесора
И здесь у многих часто возникает вопрос: «Проц у меня 64-х битный, а операционная система на компе 32-х битная. Это что же получается, я не эффективно использую возможности железа моего компьютера?». Однозначно я вам не отвечу. Да это так.
А вот нюансы 32х битной ОС:
64-разрядная система – отличный вариант для игр, обработки видео и прочих емких программ. Но для нее лучше иметь ОЗУ с запасом. Почему? Да потому что она потребляет больше ресурсов. Ведь КПД использования его пространства такой операционкой может оказаться ниже чем у 32 битной;
Теперь, когда вы определили свои предпочтения по ОС, вернемся к разрядности процессора. Если она 32-битная, то можно установить только соответствующую систему. Если у вас 64-разрядный CPU, можете ставить любую версию операционки. Но не забывайте об объеме RAM.
На этом наше знакомство с разрядностью процессора закончено. Надеюсь, вы теперь сможете блеснуть своими знаниями по этой теме даже в беседе со специалистами.
До встречи на новых станицах моего блога и всем удачи.
Что такое разрядность процессора
Разрядностью процессора называется количество бит в обрабатываемых им числах, записанных в двоичной системе счисления. Эта техническая характеристика процессора является одной из самых важных, потому что определяет его быстродействие.
Поэтому для конструкторов так важно было увеличить разрядность процессоров. В современных персональных компьютерах работают 64-разрядные процессоры. Но так было не всегда, первые микропроцессоры Intel в 1970 году были всего лишь 4-разрядными.
Чтобы было понятнее, о чем идет речь, необходимо немного рассказать о том, что такое двоичная система счисления, что такое бит и как они связаны с разрядностью процессора.
Если не вдаваться в детали, компьютеры обрабатывают информацию, загружая числа в двоичной системе счисления из оперативной памяти в центральный процессор, обрабатывая их и записывая полученный результат обратно в память.
Основой компьютерной индустрии является двоичная система счисления. В обычной жизни мы привыкли использовать десятичную систему счисления, где все числа записываются десятью цифрами от 0 до 9. Двоичная система счисления использует для записи чисел всего две цифры: 0 и 1.
При хранении в памяти каждая цифра числа хранится в отдельной ячейке памяти. Эти единицы измерения информации в двоичной системе счисления называются битами.
Каждый процессор обрабатывает числа, которые имеют определенное количество разрядов. Разряд – это «рабочее место» цифры в числе. Например, в привычной нам десятичной системе счисления разряды называются десятками, сотнями, тысячами и так далее.
Чем больше у числа разрядов, тем больше это число. При этом каждая цифра числа записывается на месте, соответствующем ее разряду.
Каждый бит числа в двоичной форме используется для записи одного разряда этого числа. В каждой ячейке оперативной памяти процессора хранится один бит, хранящий один разряд числа. Получается, что для хранения больших чисел необходимо большое количество разрядов и памяти процессора под них.
Максимальное число разрядов и бит в числах, с которыми может работать процессор, называется разрядностью процессора.
Разрядность процессора в первую очередь влияет на скорость работы процессора с данными, потому что узким местом, сдерживающим рост скорости работы процессора, оказалась скорость передачи данных между процессором и памятью. А чем больше разрядов у передаваемых чисел, тем эти числа больше и тем больше информации передается за один раз между процессором и памятью, тем выше быстродействие процессора.
Микропроцессор должен быть шестнадцатиразрядным (формальное обоснование)
Берём всё бесконечное и неопределимое множество возможных реализаций микропроцессора и выделяем ключевые параметры, определяющие его архитектуру:
R — разрядность (ширина единицы памяти в битах)
A — количество адресуемых единиц памяти (объём адресного пространства)
C — количество исполняемых команд (объём командного пространства)
Задаём ключевое условие, способствующее целостности и завершённости информационной модели (и как следствие — эффективности и удобству в использовании устройства, реализованного на её базе):
Соблюдение данного условия означает, что любая ячейка способна вместить адрес любой другой ячейки, а также содержит исчерпывающую информацию о выполняемом действии. Уменьшение адресного пространства чревато ссылками на несуществующую память, а увеличение — избыточной информацией, необходимой для обеспечения возможности адресовать всю память. То же самое с командным пространством. Таким образом наше гипотетическое множество не перестаёт быть бесконечным, зато становится более определимым.
Существуют ли другие условия, удовлетворяющие перечисленным выше критериям и очевидные без углубления в детали разработки низкоуровневой архитектуры? Да, по крайней мере одно такое условие существует:
Соблюдение данного условия означает, что для задания номера любого бита в ячейке требуется целое число бит (опять же, избыток или недостаток здесь нежелателен из соображений удобства написания и надёжности работы машинного кода).
Очевидно, что n=4 — это минимальное приемлемое значение, поскольку 256 байт памяти при n=3 годится разве что для программирования ёлочных гирлянд. При n=5 получаем объём памяти, соответствующий последним достижениям в сфере ИТ. Но если считать главным назначением памяти, адресуемой процессором, хранение машинного кода (движка), а данные, которыми манипулирует этот движок, вынести за пределы адресного пространства (то есть если исходить из представления, что их носителями будут внешние устройства), то такой объём памяти (16 Гб) будет явно избыточным. Действительно, в ОЗУ современных компьютеров на долю машинного кода приходится лишь малая части памяти, всё остальное — данные. Кроме того, разделение кода и данных на аппаратном уровне вполне согласуется с представлением о хорошем стиле как проектирования микропроцессора, так и программирования на его асемблере. В мегабит машинного кода, написанного на эффективном асме (при условии вынесения данных за пределы адресуемого процессором ОЗУ), можно вместить полноценную ОСь. Если же этой памяти окажется недостаточно (например, для реализации многозадачности), можно использовать несколько процессоров, ведь «разделение труда» в области ИТ тоже, как правило, способствует удобству разработки программ и эффективности их функционирования. В принципе, для реализации многозадачности ничего не мешает обойтись и одним процессором: можно, скажем, реализовать быстрый интерфейс обмена данными между ОЗУ и внешней памятью — благо, небольшой объём ОЗУ позволяет обновлять его не последовательно, а параллельно (одним «кадром»), так что любой участок процессорной памяти можно будет перезаписать за считанные такты.
Я это всё к тому, что любые препятствия, вызванные ограничением объёма адресуемой памяти до одного мегабита, несложно обойти посредством аппаратной реализации обмена данными с внешней памятью. Преимуществу же использования именно шестнадцатиразрядной архитектуры, помимо приведённых выше соображений, можно дать формальное обоснование, а именно:
Соблюдение данного условия означает, что в одной ячейке памяти можно разместить целое число значений в диапазоне [ 0..R-1 ] (например, для n=5 это условие не соблюдается — в данном случае R, равное 32-м битам, не делится на 5 без остатка). Поскольку разрядность процессора является фундаментальным параметром, такое свойство может оказаться в дальнейшем весьма полезным.
Ну и наконец главным аргументом в пользу числа 16, положенного в основу низкоуровневой архитектуры, является то обстоятельство, что оно задаёт оптимальный объём командного пространства — примером тому может послужить процессор PDP-11 (впрочем как и большинство современных процессоров, расширение разрядности которых практически не сказалось на их системе команд).
Для наглядности приведу последовательность, отражающую фундаментальность приведённых выше обоснований:
2 ^ 0 = 1
2 ^ 1 = 2
2 ^ 2 = 4 ( = n )
2 ^ 4 = 16 ( = R )
2 ^ 16 = 65536 ( = A = C )
32- или 64-разрядный процессор: в чем разница и что лучше для обычного пользователя ПК?
32- или 64-разрядный процессор компьютера – что лучше? Сегодня пользователи этим вопросом не заморачиваются по той простой причине, что все современные сборки ПК, как правило, комплектуются 64-разрядными процессорами. Но еще каких-то 5-6 лет назад споры о том, какой же процессор лучше — 32- или 64-разрядный – были популярнейшей темой различных компьютерных форумов в Интернете.
Что такое разрядность процессора, в чем заключается отличие 32- от 64-разрядного процессора, и как это в конечном счете влияет на работу и производительность ПК с позиции обычного пользователя? В этом всем попытаемся разобраться ниже.
0. Оглавление
1. Как узнать разрядность установленного на ПК процессора?
Чтобы узнать разрядность установленного на ПК процессора, лучше всего установить специальную программу, функционал которой предусматривает отображение детальной информации об аппаратных составляющих ПК. Например, программы CPU-Z или Speccy – их можно скачать c официальных сайтов совершенно бесплатно.
Запустите одну из этих программ, подождите, пока те просканируют систему и отобразят аппаратные характеристики ПК. Зайдите в раздел меню, в котором содержатся данные о центральном процессоре ПК – вкладки «CPU» в программе CPU-Z или «Центральный процессор» в Speccy.
Разрядность процессора отображается в графе «Инструкции», где выводятся данные о поддержке инструкций. Если процессор 64-разрядный, то в этой графе должно присутствовать об этом указание.
В программе «CPU» в зависимости от производителя процессора это либо «EM64T» (Intel 64), либо «x86-64» (AMD 64).
В программе Speccy все чуть проще – графа инструкции отображает либо «AMD 64», либо «Intel 64».
Если раздел «Инструкции» в обеих программах не отображает таких данных, это значит на ПК установлен 32-разрядный процессор.
Но встретить 32-разрядный процессор сегодня не так-то и просто, это должна быть очень старая сборка ПК, ведь начиная с первого 64-разрядного процессора AMD Athlon 64, представленного в 2003 году, и поздних моделей Pentium 4 от Intel, на рынок компьютерной техники производители поставляют только 64-разрядные процессоры.
2. Разрядность: что включает в себя этот термин?
Как видим, определить разрядность процессора, установленного на ПК очень просто, но что же включает в себя сам термин разрядность? Разрядность процессора это – число разрядов (их еще называют битами), которые процессор способен обработать за один раз.
Рост разрядности процессоров был обусловлен развитием компьютерных технологий.
В 1971 году компанией Intel был создан первый 4-разрядный процессор 4004. Чуть позднее появился 8-разрядный 8080, затем 16-разрядный 8086. Первый 32-разрядный процессор 80386 компания Intel создала в 1985 году, и он в дальнейшем стал базой для всех сегодняшних моделей компьютерных процессоров. А вот первенство в создании 64-разрядного процессора принадлежит компании AMD – в 2003 году она создала Athlon 64.
Термин разрядность применяется не только к процессорам, но также и к шинам. К примеру, технические характеристики видеокарт часто содержат указание разрядности шины памяти. Что касается определения термина разрядности шины, то здесь будет виднеться та же суть, что и у термина разрядности процессора. Так, разрядность шины это не что иное, как число бит, одновременно обрабатываемое шиной.
3. Каковы преимущества 64-разрядных процессоров для обычных пользователей ПК?
Для обычных пользователей, использующих ПК сугубо для своих личных нужд в рамках досуга, преимущество 64-разрядных процессоров заключается в возможности задействовать больше 4 Гб оперативной памяти. 64-разрядный процессор позволяет использовать 8, 16, 32 и даже более Гб оперативной памяти в работе ПК. Такая производительность необходима тем, кто использует ПК, загружая его многозадачностью, работая со сложными графическими программами или профессиональными видеоредакторами. И, конечно же, геймеры – для многих новинок игромира, для некоторых мощных видеоигр, начиная с 2011 года, может потребоваться как минимум 8 Гб оперативной памяти, чтобы играть на максимальном качестве игры.
Для использования такого преимущества 64-разрядного процессора, на ПК должна быть установлена 64-разрядная операционная система, специфика которой сможет раскрыть весь мощностной потенциал ПК. А вот если на ПК с 64-разрядным процессором и, к примеру, с 8 Гб оперативной памяти установить 32-разрядную операционную систему, придется довольствоваться ограничениями – оперативная память будет доступна только в объеме 4 Гб. И весь мощностной потенциал «железа» ПК останется нераскрытым.
Определить, на ПК установлена 32- или 64-разрядная Windows, можно, вызвав левой клавишей мышки контекстное меню на иконке «Мой компьютер» (или «Этот компьютер» в Windows 8 и 8.1). В меню выбираем «Свойства». Откроются основные системные характеристики, где в графе «Тип системы» и будет указана, какая Windows установлена — 32- или 64-разрядная.
Это же можно определить, не выходя из программы Speccy – в разделе «Операционная система».
32- и 64-разрядная Windows практически не отличаются ни установкой, ни настройкой, ни использованием. Скачать загрузочный образ Windows в Интернете или купить физический загрузочный диск можно очень легко и с одной, и с другой разрядностью операционной системы.
Смотрите также:
В данной статье будет подробно, в деталях, рассказано как создать нового пользователя в Microsoft SQL Server 2012 (в более старых редакциях, например в Microsoft SQL Server 2008 R2, набор действий…
Здесь будет рассказано как добавить нового пользователя для работы в системе 1С:Предприятие 7.7. 0. Оглавление Добавление пользователя в конфигураторе Настройки значений по умолчанию (только для конфигурации «Торговля и…
Разрядность центрального процессора и что это такое?
Всем привет! Сегодня поговорим о том, что такое разрядность центрального процессора в компьютере, на что влияет эта основная характеристика, как она определяется. Про частоту шины процессора вы можете почитать в этом посте.
Что такое разрядность
В науке информатики — разрядность (она же битность) определяет как количество информации, которая проходит через шину за один такт. За этот такт выполняется 1 элементарная операция, называемая инструкцией.
Современные процессоры поддерживают инструкции длиной 32 или 64 бита, то есть являются 32 или 64 разрядными. К слову, сегодня редко можно встретить 32-битные процессоры. Даже у большинства бюджетных моделей производства как Intel, так и AMD, разрядность составляет 64 бита.
Однако все еще бывают и 32 разрядные CPU, которые используются для несложных вычислений. Например, для современного офисного компьютера, используемого для печати документов, таких параметров вполне достаточно. А вот уже, например, дизайнеру нужен девайс помощнее: современные графические редакторы слишком требовательны к производительности ПК.
Что зависит от разрядности ЦП
Эта, казалось бы, незначительная характеристика, в итоге определяет всю архитектуру компьютера. На 64-разрядном ЦПУ можно запустить 32 битную Винду, хотя работать она будет, сказать по правде, не очень. А вот 32-битный CPU 64-разрядную ОС вообще не запустит, так как не поддерживает инструкции необходимой длины.
Если совсем кратко, то разрядностью Windows определяется, сколько оперативной памяти будет доступно пользователю. Дело в том, что 32-разрядные ОС (обозначаются как х86) не видят больше чем 3.25 Гб оперативной памяти. Да, можно поставить несколько планок с солидным суммарным объемом, но операционная система к ним попросту не будет обращаться.
64 разрядные Windows могут увидеть гораздо больше ОЗУ. Сегодня «потолок» просто гигантская цифра — почти 200 Гб. Даже для игрового компа этого с избытком. Более того, не всякий сервер столько будет использовать.
Требования современных игр сегодня уже измеряются десятками гигабайт ОЗУ. Показатель в 16 Гб за несколько лет стал из топового рекомендуемым системным параметром. Для мощного игрового компа сегодня 32 Гб считается оптимальным размером оперативки.
Учитывая дикие темпы развития индустрии, уже через пару лет и этого возможно будет мало.
Что значит это в итоге для любого юзера? То, что про 32-битные ЦП можно забыть как про морально устаревшие девайсы. Впрочем, если вы олдскульно в очередной раз перепроходите третьих «Героев меча и магии» или вторую «Диабло» и равнодушны к современным играм класса ААА, то вам это, скорее всего, индифферентно.
Советую также почитать о сроке службы процессора и о том, на что влияет CPU в играх. Подписывайтесь на меня в социальных сетях, чтобы не пропустить уведомление о публикации новых материалов. До завтра!