На что влияет угол откидки лопастей гребного винта
На что влияет угол откидки лопастей гребного винта
Официальный дилер Volvo Penta в Нижнем Новгороде и Нижегородской области
Запчасти и расходники
Услуги сервисного центра
Запчасти и расходники
Запчасти и расходники
Типы гребных винтов
Мы не можем представить современную лодку без хорошего дизельного или бензинового мотора и мощной судовой колонки-редуктора. Однако катер не сделает ни шагу вперед без одного маленького, но очень важного фрагмента. Конечно же речь пойдет о гребном винте.
Пропеллеры — вещь индивидуальная. Они различаются сразу по нескольким критериям, обладают своей собственной маркировкой. Давайте разберемся в теме подробнее. Быть может, кому-то действительно поможет эта небольшая статья, и грамотных судовладельцев станет больше.
Баланс, баланс, баланс. Всё заключается в этом правиле золотой середины. Современные производители судовой техники настоятельно предписывают комбинировать несколько ключевых факторов: тип лодки, вид двигателя, особенности редуктора и гребные винты.
В прошлых статьях мы говорили, что сотрудничество верфей и компаний, создающих силовые установки, не случайно. Благодаря такой тесной коммуникации при производстве получается действительно превосходный по качеству продукт.
Как с моторами, так и с движителями условия одинаковые: мощный двигатель подходит под резвый редуктор с особыми винтами. Подберешь сверхсильную технику, и яхта взлетит в небо.
Никто удовольствия от управления не получит. Опасно ли это? Да, перевернуться на воде, мы полагаем, точно никто не хочет. Особенно если это происходит вдали от берега. От правильно подобранного оборудования зависит многое, если не всё. С гребными винтами ситуация ровным счетом та же.
Чтобы точно определить, какой пропеллер вам нужен, необходимо не только отталкиваться от теоретической базы, но и пробовать, проверять, как катер ведет себя на воде. Если вы не уверены в собственных силах, то лучше, оставить это дело профессионалам, которые обладают опытом и компетентностью. Но если вы всё-таки решились действовать в отрыве, то мы постараемся немного помочь.
Количество лопастей
Когда мы смотрим на винт, сначала обращаем внимание на внешний вид, цвет, форму. Самое очевидное, что может заметить любой человек, даже не причастный к водному спорту, — это количество лопастей. Они могут выглядеть по-разному: здесь и изгибы, и желобки, и направление от центральной оси.
2-лопастной гребной винт изготавливается для днищевых яхтенных колонок (например для SailDrive Volvo Penta). Он состоит из сплавов бронзы и алюминия и применяется в соленой воде. На легких «моторках» с парусом и небольших катерах в Средиземном море — это самый распространенный пропеллер. Простой, удобный и доступный по цене.
3-лопастные движители имеют не менее хорошие показатели полезного действия (КПД), но больше подвержены воздействию кавитации. Поэтому используются в комбинации с антикавитационными плитами на яхтах всех типов.
При одинаковых диаметрах 4-лопастной гребной винт ощутимо снижает вибрацию и может переработать большую мощность, снимаемую с мотора и редуктора.
Судовая техника с 5 лопастями позволяет увеличить полезное действие колонки без изменения (увеличения) диаметра самих гребных винтов. Отличный вариант для борьбы с раздражающей вибрацией. Существенно снижается шум, а работа оптимизируется, уменьшая топливные потери.
Откидка и диаметр
Угол откидки измеряется отношением между лопастью и ступицей. Ступица — это центральная часть винта, его ось вращения. Опять же тут всё не так просто. Положительный наклон увеличивает КПД, отрицательный — прочность. На повышенных оборотах гребные винты испытывают серьезные нагрузки, поэтому необходимо устанавливать пропеллеры с отрицательным углом.
Существуют модификации без угла наклона лопасти. При высокой нагрузке сохраняется прямой угол между ступицей и лопастью. Перпендикулярное положение при небольших нагрузках обеспечивает продолжительный срок службы и минимизирует кавитационную эрозию.
Из курса школьной геометрии вспомним, что такое диаметр. Сейчас важно понять, как он влияет на выбор движителя для нашей лодки. При подборе следует руководствоваться правилом: чем больше обороты гребного вала, тем меньше диаметр, и наоборот. Для быстроходных глиссирующих судов подойдут скромные по габаритам пропеллеры, а для крупных тихоходных — большие.
Что надо знать о гребном винте?

Рисунок 1. Схема сил и скоростей на лопасти винта (правого вращения)
Упор в большой степени зависит от угла атаки α профиля лопасти. Оптимальное значение α, для быстроходных катерных винтов 4-8°. Если α больше оптимальной величины, то мощность двигателя непроизводительно затрачивается на преодоление большого крутящего момента; если же угол атаки мал, подъемная сила и, следовательно, упор Р будут невелики, мощность двигателя окажется недоиспользованной.
На схеме, иллюстрирующей характер взаимодействия лопасти и воды, α можно представить как угол между направлением вектора скорости набегающего на лопасть потока W и нагнетающей поверхностью. Вектор скорости потока W образован геометрическим сложением векторов скорости поступательного перемещения va винта вместе с судном и скорости вращения vr, т. е. скорости перемещения лопасти в плоскости, перпендикулярной оси винта.
Так как сторона va в треугольнике рассматриваемых скоростей остается постоянной, то по мере удаления сечения лопасти от центра необходимо разворачивать лопасти под большим углом к оси винта, чтобы α сохранял оптимальную неличину, т. е. оставался одинаковым для всех сечений. Таким образом, получается винтовая поверхность с постоянным шагом Н. Напомним, что шагом винта называется перемещение любой точки лопасти вдоль оси за один полный оборот винта.

Рисунок 2. Винтовая поверхность лопасти (а) и шаговые угольники (б)
Гребной винт на «Вихре» имеет шаг Н=0.3 м и частоту вращения n=2800/60=46.7 об/с. Теоретическая скорость винта:
Таким образом, мы получаем разность
Эта величина, называемая скольжением, и обуславливает работу лопасти винта под углом атаки α к потоку воды, имеющему скорость W. Отношение скольжения к теоретической скорости винта в процентах называется относительным скольжением. В нашем примере оно равно
| s= | H*n-va | = | 2.9 | =0.207=20.7%. |
| H*n | 14 |
Максимальной величины (100%) скольжение достигает при работе винта на судне, пришвартованном к берегу. Наименьшее скольжение (8-15%) имеют винты легких гоночных мотолодок на полном ходу; у винтов глиссирующих прогулочных мотолодок и катеров скольжение достигает 15-25%, у тяжелых водоизмещающих катеров 20-40%, а у парусных яхт, имеющих вспомогательный двигатель, 50-70%.

Рисунок 3. Соотношение скорости лодки и осевой скорости винта.
Коэффициент полезного действия. Эффективность работы гребного винта оценивается величиной его КПД, т. е. отношения полезно используемой мощности к затрачиваемой мощности двигателя. Полезная мощность или ежесекундное количество работы, используемой непосредственно для движения судна вперед, равно произведению сопротивления воды R движению судна на его скорость V (Nп=RV кгсм/с).
Мощность, затрачиваемую на вращение гребного винта, можно выразить в виде зависимости Nз от крутящего момента М и частоты вращения n
Следовательно, КПД можно вычислить следующим образом:
В свою очередь и корпус судна, образуя попутный поток, уменьшает скорость потока воды, натекающей на гребной винт. Это учитывает коэффициент попутного потока w:
Значения w нетрудно определить по данным, приведенным выше.
Таким образом, полезная мощность с учетом взаимовлияния корпуса и винта равна
| Nп=Pe*(1-t)* | va | кгсм/с, |
| 1-w |
а общий пропульсивный КПД комплекса судно-двигатель-гребной винт вычисляется по формуле:
| η= | Nп | = | Pe*va | * | 1-t | *ηM=ηp*ηk*ηM |
| Na | 2π*n*M | 1-w |
Максимальная величина КПД гребного винта может достигать 70-80%, однако на практике довольно трудно выбрать оптимальные величины основных параметров, от которых зависит КПД: диаметра и частоты вращения. Поэтому на малых судах КПД реальных винтов может оказаться много ниже, составлять всего 45%.
Максимальной эффективности гребной винт достигает при относительном скольжении 10-30%. При увеличении скольжения КПД быстро падает; при работе винта в швартовном режиме он становится равным нулю. Подобным же образом КПД уменьшается до нуля, когда вследствие больших оборотов при малом шаге упор винта равен нулю.
Коэффициент влияния корпуса нередко оказывается больше единицы (1.1-1.15), а потери в валопроводе оцениваются величиной ηM=0.9÷0.95.
Диаметр и шаг винта. Элементы гребного винта для конкретного судна можно рассчитать, лишь располагая кривой сопротивления воды движению данного судна, внешней характеристикой двигателя и расчетными диаграммами, полученными по результатам модельных испытаний гребных винтов, имеющих определенные параметры и форму лопастей. Для предварительного определения диаметра винта можно воспользоваться формулой
| D= | 4 | 4 √ | N | =M, |
| √n | 102va |
Диаметр гребных винтов, полученный как по приближенной формуле, так и с помощью точных расчетов, обычно увеличивают примерно на 5% с тем, чтобы получить заведомо тяжелый винт и добиться его согласованности с двигателем при последующих испытаниях судна. Для «облегчения» винта его постепенно подрезают по диаметру до получения номинальных оборотов двигателя при расчетной скорости.
Шаг винта можно ориентировочно определить, зная величину относительного скольжения s для данного типа судна и ожидаемую скорость лодки:
Легкий или тяжелый гребной винт. Диаметр и шаг винта являются важнейшими параметрами, от которых зависит степень использования мощности двигателя, а следовательно, и возможность достижения наибольшей скорости хода судна.

Рисунок 4. Внешняя и винтовая характеристики мотора «Вихрь».
Наоборот, если шаг или диаметр винта малы (кривая 4), и упор и потребный крутящий момент будут меньше, поэтому двнгатель не только легко разовьет, но и превысит значение номинальной частоты вращения коленвала. Режим его работы будет характеризоваться точкой С. И в этом случае мощность двигателя будет использоваться не полностью, а работа на слишком высоких оборотах сопряжена с опасно большим износом деталей. При этом надо подчеркнуть, что поскольку упор винта невелик, судно не достигнет максимально возможной скорости. Такой винт называется гидродинамически легким.
Для каждого конкретного сочетания судна и двигателя существует оптимальный гребной винт. Для рассматриваемого примера такой оптимальный винт имеет характеристику 3, которая пересекается с внешней характеристикой двигателя в точке В, соответствующей его максимальной мощности.

Рисунок 5. Зависимость скорости мотолодки «Крым» от нагрузки и шага гребного винта мотора «Вихрь» мощностью 14.8 кВт (20 л.с.)

Рисунок 6. Построение шаговых угольников (а) и кривые изменения кромчатого шага лопасти (б).
| r/R | r, мм | h, мм | Hср=0.264м | Hср=0.240м | ||
| l | L | l | L | |||
| 0.3 | 36 | 62.5 | 59 | 75.2 | 65.5 | 82.5 |
| 0.5 | 60 | 57.4 | 83.5 | 119 | 92 | 129.5 |
| 0.7 | 84 | 52.3 | 105 | 144.5 | 115 | 154.5 |
| 0.9 | 108 | 47.2 | 119.5 | 142 | 131.5 | 165 |
| 1.0 | 120 | 44.5 | 124 | — | 139.5 | — |
Численные рекомендации для наиболее популярных моторов мощностью 14-18 кВт (20-25 л.с.) могут быть следующие. Штатные винты, имеющие H=280÷300 мм, дают оптимальные результаты на сравнительно плоскодонных лодках с массой корпуса до 150 кг и нагрузкой 1-2 чел. На еще более легкой лодке массой до 100 кг можно получить прирост скорости за счет увеличения H на 8-12%.
На более тяжелых глиссирующих корпусах, на лодках, имеющих большую килеватость днища и при большой нагрузке (4-5 чел.), шаг винта может быть уменьшен на 10-15 % (до 240-220 мм), но использовать такой винт при поездке без пассажиров с малой нагрузкой не рекомендуется: двигатель будет «перекручивать обороты» и быстро выйдет из строя.
При установке подвесного мотора на тихоходной водоизмещающей шлюпке рекомендуется применять трех- и четырех лопастные винты с соотношением H/D не менее 0.7; при этом ширину лопасти и профиль ее поперечного сечения сохраняют такими же, как и на штатном винте мотора.
При замене согласованного с корпусом и двигателем гребного винта другим, с близкими величинами D и H (расхождение должно быть не более 10%), требуется, чтобы сумма этих величин для старого и нового винтов была равна.
Кавитацию винта можно обнаружить по тому, что скорость лодки перестает расти, несмотря на дальнейшее повышение частоты вращения. Гребной винт при этом издает специфический шум, иа корпус передается вибрация, лодка движется скачками.
Упор, развиваемый гребным винтом, практически не зависит от площади лопастей. Наоборот, с увеличением этой площади возрастает трение о воду, и на преодоление этого трения дополнительно расходуется мощность двигателя. С другой стороны, надо учесть, что при том же упоре на широких лопастях разрежение па засасывающей стороне меньше, чем на узких. Следовательно, широколопастной винт нужен там, где возможна кавитация <т. е. на быстроходных катерах и при большой частоте вращения гребного вала).
В качестве характеристики винта принимается рабочая, или спрямленная, площадь лопастей. При ее вычислении принимается ширина лопасти, замеренная на нагнетающей поверхности по длине дуги окружности на данном радиусе, проведенном из центра винта. В характеристике винта указывается обычно не сама спрямленная площадь лопастей А, а ее отношение к площади Ad сплошного диска такого же, как винт, диаметра, т. е. A/Ad. На винтах заводского изготовления величина дискового отношения выбита на ступице.
Для винтов, работающих в докавитационном режиме, дисковое отношение принимают в пределах 0.3-0.6. У сильно нагруженных винтов на быстроходных катерах с мощными высокосборотнымн двигателями A/Ad увеличивается до 0.6-1.1. Большое дисковое отношение необходимо и при изготовлении винтов из материалов с низкой прочностью, например, из силумина или стеклопластика. В этом случае предпочтительнее сделать лопасти шире, чем увеличить их толщину.
Наибольшее распространение среди винтов малых судов получил сегментный плоско-выпуклый профиль. Лопасти винтов быстроходных мотолодок и катеров, рассчитанных на скорость свыше 40 км/ч, приходится выполнять возможно более тонкими с тем, чтобы предотвратить кавитацию. Для повышения эффективности в этих случаях целесообразен выпукло-вогнутый профиль («луночка»). Стрелка вогнутости профиля принимается равной около 2% хорды сечения, а относительная толщина сегментного профиля (отношение толщины t к хорде b на расчетном радиусе винта, равном 0.6R) принимается обычно в пределах t/b=0.04÷0.10. Ординаты профилей лопастей некавитирующих винтов приведены в таблице 2.
















