на каком расстоянии видно радугу

Радуга с точки зрения физики

Простое и наглядное объяснение природного оптического феномена

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Радуга похожа на настоящую магию. Она такая красивая и волшебная в небе после дождя, когда выглядывает солнце, что заставляет нас чувствовать себя счастливыми, не так ли?

Но, как происходит это магическое волшебство? Как в небе появляются эти разноцветные дуги? Давайте разберемся.

Начнем с основ физики. Белый солнечный свет состоит из множества различных световых волн разной длины. В зависимости от длины волны он воспринимается нашим глазом как определенный цвет — от красного (самые длинные волны) до фиолетового (самые короткие). При смешении все эти цвета и дают видимый белый свет.

Принято выделять семь основных цветов, которые мы называем цветами радуги: красный, оранжевый, желтый зеленый, голубой, синий и фиолетовый. Эти цвета легко запоминаются по первым буквам известной всем из детства фразы:

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Кроме того, в белом солнечном свете присутствуют волны, которые наш глаз не видит — ультрафиолетовые (короче фиолетовых) и инфракрасные (длиннее красных). Первые известны тем, что вызывают загар на нашем теле, а вторые — это тепловое излечение или попросту тепло, которое мы чувствуем, когда солнечные лучи падают на наше лицо и тело.

Проходя через границу неоднородных сред (например воздуха и воды или воздуха и стекла) белый свет преломляется и разлагается на отдельные цвета, которые мы называем спектром. Чтобы увидеть цвета спектра, можно использовать трехгранную призму, которая преломляя солнечный свет, выделяет из него все цветовые составляющие.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Эффект разложения белого света на цветные составляющие (спектр) называется дисперсией. Именно из-за преломления света бриллианты играют цветными огнями.

Но, вернемся к нашей радуге. Цвета спектра и есть цвета радуги. Как же происходит дисперсия солнечного света, порождающая радугу?

Когда солнечный свет сталкивается с каплей дождя, часть света от неё отражается, а остальная часть попадает во внутрь капли. Луч света преломляется на ближайшей к нему поверхности капли дождя, потом этот свет попадает на дальнюю поверхность капли и отражается от неё. Когда этот внутренне отраженный свет вновь достигает поверхности капли, он снова преломляется при выходе. Вот как это выглядит на схеме:

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Как видим, часть падающего на каплю солнечного света отражается обратно под некоторым углом. Этот угол не зависит от размера капли, но зависит от показателя преломления воды капли. Для дождевой воды показатель преломления равен 1,333, поэтому угол отражения получается около 42°. А морская вода имеет более высокий показатель преломления, чем дождевая, поэтому угловой радиус радужной дуги в морских брызгах меньше, чем у дождевой.

Фактически, угол отражения света в капле — это угол между солнцем, каплей дождя и глазом наблюдателя. Однако, поскольку дождевых капель много, лучи преломленного и отраженного света от разных капель образуют конус с вершиной в зрачке глаза наблюдателя и осью, проходящей через наблюдателя и солнце. Окружность в основании этого конуса и будет радугой. Но, поскольку наблюдатель находится на поверхности земли, он видит только часть окружности — дугу. Из этого также следует, что для образования радуги само солнце должно находиться не выше 42° над горизонтом. Вот почему радугу невозможно увидеть в летний полдень, когда солнце высоко в зените. Вообще, чем ниже над горизонтом находится солнце, тем большей будет дуга радуги.

Если же наблюдателя поднять над землей, например на воздушном шаре или самолете, то при определённых обстоятельствах он сможет увидеть радугу в форме полной окружности.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Сама радуга не находится в одном конкретном месте. Существует множество радуг, однако, только одну из них может видеть наблюдатель в зависимости от местоположения его и солнца.

Все капли дождя преломляются и отражают солнечный свет одинаковым образом, но только свет от некоторых капель дождя достигает глаза наблюдателя. Этот свет и есть радуга для этого наблюдателя.

Поэтому легенда о том, что в месте, где радужная дуга касается поверхности земли скрыт золотой клад гномов, лишена смысла.

Вернемся к схеме преломления солнечного света. На картинке с призмой видно, что фиолетовый и синий свет (короткие волны) преломляются под б ольшим углом, чем красный свет, но за счет отражения световых лучей от задней поверхности капли воды, фиолетовые и синие лучи выходят из капли под меньшим углом к входящему лучу солнечного света, чем лучи красного света. Из-за этого синий цвет виден на внутренней стороне дуги радуги, а красный — снаружи.

Но, бывают двойные радуги у которых порядок цветов второй, наружной дуги обратный. Эта вторая дуга образована лучами двойного преломления солнечного света в каплях воды. Поэтому наружная радуга всегда бледнее основной внутренней.

Схема поясняет, как образуется двойная радуга.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Угловой радиус вторичной радуги — 50–53°. Небо между двумя радугами обычно заметно более тёмное, эту область называют полосой Александра.

Источник

Почему радуги бывают разными

Введение

Конечно, каждый читатель не раз видел на небе радугу. Лучше всего заметна самая яркая, так называемая первая радуга. Она видна в направлениях, составляющих угол 42° с линией, проходящей через центр солнца и глаз наблюдателя. При этом солнце расположено за спиной наблюдателя. Значительно менее яркая радуга видна в направлениях, составляющих угол 51° с той же линией. Порядки расположения цветов в этих двух радугах разные. Внутренняя часть (с меньшими углами) первой радуги фиолетово-синяя, а внешняя красная. У второй радуги — наоборот, внутренняя часть красная, а внешняя фиолетовая. Иногда кроме этих двух радуг видны еще и многочисленные дополнительные светлые дуги, расположенные внутри самой яркой первой радуги. Они есть и вне второй радуги, но их яркость очень мала.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Как возникает радуга? Почему не всегда видны дополнительные дуги? Попробуем ответить на эти вопросы.

Когда и как бы радуга ни возникала, она всегда образуется игрой света на каплях воды. Обычно это дождевые капли, изредка — мелкие капли тумана. Взаимодействие параллельного пучка солнечного света и круглой дождевой капли приводит к тому, что свет преломляется, отражается и очень слабо поглощается каплей. Использованные в этой фразе термины понятны и школьникам, закончившим восьмой класс и знающим только о геометрической оптике, и старшеклассникам, знакомым с волновой природой света.

В геометрической оптике рассматриваются три главных закона, которые описывают поведение лучей света. Это закон прямолинейного распространения света в однородной среде и законы отражения и преломления света на границе раздела двух сред. Закон отражения света в упрощенной форме формулируется так: угол падения луча равен углу отражения. А закон преломления лучей света на границе раздела утверждает, что отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде (из которой свет падает на границу раздела) к скорости света во второй среде (находящейся за границей раздела). Или, иными словами, отношение синусов углов падения и преломления равно относительному показателю преломления второй и первой сред.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Если пользоваться только законами геометрической оптики, то можно показать, что лучи света, прошедшие внутрь капли, отразившиеся внутри нее один или два раза и затем вышедшие наружу, собираются (группируются, или концентрируются) вблизи направлений, которые как раз соответствуют первой и второй радугам (рисунки 1 и 2 соответственно). (Можно аналогично найти направление для третьей и последующих радуг, но, поскольку они настолько слабы, что никогда не наблюдаются на фоне ярких первых двух радуг, мы их рассматривать не будем — в прямом и в переносном смысле!) Условия концентрации по некоторым направлениям в пространстве лучей, вышедших из капли, соответствуют экстремумам в зависимости угла поворота луча — будем обозначать его как 180 – φ — от так называемого прицельного угла падения α. Для первой радуги φ = 42°, а для второй радуги φ = 51°. В случае света разных цветов (длин волн) соответствующие углы поворота немного отличаются, так как каждой длине волны света (цвету) соответствует свой коэффициент преломления n. Связь между углом падения α, углом преломления β и углом φ для одного отражения света внутри капли такова: φ = 4β – α. Для двух отражений луча света внутри капли: φ = 180° – 2α + 6β. По закону преломления, sinα/sinβ = n. У воды коэффициент преломления для всех длин волн видимого света близок к величине n = 4/3.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Графики зависимости углов φ от углов α (в градусах) показаны на рисунке 3. Видно, что экстремумы приходятся как раз на значения углов φ = 42° и φ = 51°. Поскольку разным цветам соответствуют разные коэффициенты преломления n — это свойство среды называется дисперсией, — направления в пространстве, вблизи которых концентрируются лучи света, для разных длин волн не совпадают, и мы видим радугу цветной. Например, первая яркая радуга имеет угловой «размах» около 3,5°. Из рисунка 3 видно, что для одного отражения внутри капли экстремум это максимум, а для двух отражений внутри капли — минимум, поэтому понятно, почему порядки цветов в первой и второй радугах (42° и 51°) противоположные.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Любопытно, что если бы космонавт оказался на орбите Меркурия и устроил внутри космической станции туман из водяных капелек, то он увидел бы вовсе не такие радуги, к которым мы привыкли. Для него и первая, и вторая радуги солнечных лучей представлялись бы белыми! И только края этих радуг были бы слегка окрашены. Это связано с тем, что угловой размер Солнца для наблюдателей на Земле гораздо меньше угловой ширины радуг и составляет около 0,5°, а для наблюдателя, находящегося на таком же расстоянии от Солнца, как Меркурий, угловой размер Солнца примерно в 2,5 раза больше.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Однако и в земных условиях тоже можно увидеть белую радугу. Фотография, приведенная на рисунке 4, сделана из окна каюты корабля в тумане. Слой тумана обеспечил существенное угловое расширение источника света — солнце сквозь туман выглядело отнюдь не маленьким светящимся диском с четкими краями, а большим белым пятном. Если внимательно присмотреться к фотографии, то можно отметить, что верхний край белой радуги имеет красноватый оттенок, а нижний — фиолетовый. Еще одна красивая фотография белой радуги приведена на рисунке 5.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Но вот для того чтобы объяснить, почему первая и вторая радуги получаются разными по яркости, законов геометрической оптики оказывается недостаточно. На любой границе раздела энергия Еотр отраженного света и энергия Епрош света, прошедшего через границу, в сумме равны энергии Епад падающего света. Пропорции между энергиями прошедшего и отраженного света определяются относительным показателем преломления сред по разные стороны от границы, углом падения на границу, а также поляризацией падающего света (кстати, именно поэтому свет радуги сильно поляризован). Формулы для расчета отношений Еотр/Епад и Епрош/Епад вывел еще в начале XIX века Огюстен Френель, и заинтересовавшиеся читатели могут отыскать их, например, в учебниках по оптике для студентов. Так, при перпендикулярном (α = 0) падении света на границу раздела сред с относительным показателем преломления n долю энергии отраженного света можно вычислить с помощью такой формулы:

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Поскольку свет, образующий первую радугу, отразился внутри капли только один раз, а свет, образующий вторую радугу, отразился внутри капли два раза, то приближенно можно оценить отношение яркостей (интенсивностей света) этих радуг так:

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

На самом деле это отношение несколько меньше, так как внутренние отражения для больших углов падения характеризуются и большим коэффициентом отражения.

Но откуда берутся дополнительные радуги? Если какому-то направлению рассеяния солнечного света соответствует экстремум функции распределения по углам для одной капли, то и всем каплям такого же размера соответствует аналогичное направление концентрации энергии рассеянного света. При этом направлениям, расположенным рядом с экстремальным, отвечают два разных пути лучей света внутри капли. Им соответствуют разные углы падения на каплю и, естественно, немного отличающиеся длины этих путей. Если разность длин таких путей для выбранного направления пропорциональна целому числу волн света с длиной волны λ, или четному числу полуволн, то в этом направлении наблюдается максимум интенсивности света на этой длине волны. Если же разность длин путей пропорциональна нечетному числу полуволн, то в таком направлении наблюдается минимум интенсивности света на этой же длине волны. Самому экстремальному направлению, конечно же, соответствуют почти одинаковые оптические длины путей для разных углов падения вблизи максимума. Такое перераспределение энергии светового потока по разным направлениям называется интерференцией. Заметной в природе интерференция становится только в том случае, если размеры всех дождевых капель, во-первых, очень близки друг к другу, а во-вторых, настолько малы, что выполняется так называемое дифракционное соотношение: отношение длины волны света λ к диаметру капли D больше углового размера радуги. Для крупных капель, с диаметром больше 1 мм, увидеть в природе дополнительные радуги нельзя, а для малых капель — можно. Оказывается, что если размеры капель малы, то рассчитать явление без учета дифракции света, т. е. нарушения прямолинейности распространения, связанного с волновой природой света, невозможно. (Отсюда возникает «вилка» в терминологии: некоторые называют дополнительные радуги дифракционными, а некоторые — интерференционными.)

А можно ли наблюдать явления, аналогичные возникновению дополнительных радуг, в домашних условиях? Можно. Для этого, во-первых, нужно создать условия для рассеяния света не в пространственный конус, как это имеет место в каплях, а только в некоторых направлениях. Это возможно, если вместо круглых капель использовать почти цилиндрическую струю воды. Во-вторых, нужен источник света, который характеризуется значительно меньшими, чем Солнце, угловыми размерами. И в-третьих, этот источник должен создавать свет, близкий по свойствам к монохроматическому. Таким источником может быть, например, лазер. Сейчас доступны лазеры с разными длинами волн.

Приведем описание экспериментов, проведенных автором статьи в домашних условиях.

При одном и том же расположении лазеров разных цветов — красного с длиной волны λ = 630–650 нм, зеленого с λ = 532±10 нм и синего с λ = 405 нм (это — надписи на этикетках, наклеенных на корпусы лазеров) — на стене ванной комнаты были получены картинки (рис. 6), соответствующие «радуге» первого порядка (42°) от тонкой струи воды (диаметром d ≈ 1 мм). Причем во всех трех случаях струя сохраняла свои параметры, т. е. вода текла из крана непрерывно и равномерно и настройка крана при смене лазеров не менялась. На фотографиях видно, что положения главных максимумов для разных цветов отличаются, но максимумы располагаются все-таки близко друг к другу.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Добиться устойчивого течения струи с диаметром меньше 1 мм, к сожалению, не удается, поэтому получить дифракционные или интерференционные радуги на струе воды с белым светом не получится. Это связано с тем, что полученные в эксперименте расстояния между дополнительными минимумами и максимумами для всех длин волн значительно меньше 3° — ширины первой радуги.

На водяных каплях в облаках это возможно, если все капли имеют одинаковые размеры, значительно меньшие 0,1 мм. Тогда угловые промежутки между соседними максимумами малых порядков (1–10) могут достигать 2–3 градусов, и поэтому первые несколько дополнительных радуг, расположенных в непосредственной близости от основной радуги, еще различаются как отдельные. Дело в том, что наиболее ярким воспринимается глазом желтый участок спектра излучения солнца. Именно этим длинам волн и соответствуют максимумы интенсивности света в дополнительных (дифракционных/интерференционных) радугах.

Когда угловое расстояние между соседними дополнительными радугами становится меньше 0,5°, их в принципе невозможно различить, так как угловой размер Солнца как раз равен этой величине. Угловое расхождение монохроматических лучей света лазера намного меньше 0,5°, поэтому можно увидеть множество максимумов разных порядков дифракции, возникающих при рассеянии света на тонкой струе воды.

В каждой «вложенной» в основную радугу (42°) дополнительной радуге угловое расположение цветов определяется двумя факторами, «действующими» в противоположных «направлениях», — рефракционным и дифракционным. При этом рефракционный поворот лучей не зависит от номера порядка дифракции, а дифракционный поворот зависит. Вот почему в дифракционных радугах цвета не разложены так же отчетливо, как в основной радуге. С увеличением номера светлые дуги разных цветов и разных порядков дифракции накрывают друг друга, и различить их уже невозможно — они вместе образуют светлый фон неба внутри основной радуги.

А теперь — из области фантастики. Вот если бы Солнце светило монохроматическим светом, то было бы заметно гораздо больше дифракционных радуг, вложенных в основную радугу, так как каждая из них имела бы угловой размер, равный угловому размеру Солнца. И насколько величественней выглядела бы радуга, если бы Солнце, в дополнение к монохроматичности света, характеризовалось еще и очень маленьким угловым размером, а все капельки воды в облаке были бы совершенно одинаковых размеров. Такое можно себе только представить: на небе было бы несколько десятков одноцветных дуг!

Источник

На каком расстоянии видно радугу

Если вы когда-то смотрели безумно увлекательные лекции по физике, то имя Уолтер Левин вам скажет о многом. Если нет — немного вам завидуем: вас ожидает путешествие в страну науки. Газета New York Times назвала профессора Уолтера Левина веб-звездой. Ежедневно профессор влюбляет в физику тысячи людей, а в числе его поклонников сам Билл Гейтс. Сегодня в рубрике «Интеллектуальный час» — долгожданная книга Уолтера Левина «Мир глазами физика».

Профессор считает то, что большинство современных учителей физики игнорируют такое потрясающее явление, как радуга, на своих уроках, преступлением перед учениками. «Как много маленьких чудес повседневной жизни (красивых и впечатляющих) проходят мимо нас незамеченными просто потому, что никто не научил нас их видеть. Я люблю читать лекции о радугах и неизменно перед ними говорю студентам: „К концу этой лекции ваша жизнь уже никогда не будет прежней“. Это относится и к вам», — пишет Уолтер. Готовы? Тогда в путь.

Красивейшее из чудес

Мои бывшие студенты и люди, смотревшие мои лекции в интернете, вот уже много десятилетий присылают мне по обычной и электронной почте прекрасные изображения радуг и других атмосферных явлений.

Я иногда чувствую себя так, будто создал сеть разведчиков радуг, действующую ныне по всему миру.

Надо сказать, некоторые из полученных мной снимков совершенно потрясающие — особенно с Ниагарского водопада, где столько брызг, что радуги получаются невероятно впечатляющими.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Я уверен, что вы за свою жизнь видели по крайней мере десятки, если не сотни, радуг. Большинство из нас смотрели на радуги, но очень немногие их видели. В древней мифологии их называли божьими дугами, мостами, соединявшими дома смертных и богов.

Что скрывается за радугой

Отчасти очарование радуг объясняется тем, как широко, величественно и эфемерно они раскидываются через все небо. Но, как это часто бывает в физике, в основе столь масштабного величия лежат непостижимо огромные количества чего-то исключительно малого: крошечных сферических капелек воды, иногда менее одного миллиметра в диаметре, плавающих в небе.

Хотя ученые пытались объяснить происхождение радуг как минимум на протяжении тысячи лет, первое по-настоящему убедительное объяснение предложил Исаак Ньютон в опубликованном в 1704 году труде «Оптика». Ньютон понял сразу несколько моментов, каждый из которых играет важную роль в создании радуг.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Во-первых, он продемонстрировал, что обычный белый свет состоит из всех цветов (я собирался сказать «всех цветов радуги», но не хочу забегать вперед). Преломляя (изгибая) свет через стеклянную призму, ученый разделил его на составные цвета.

Он также определил, что преломлять свет могут разные материалы, в том числе вода. Ньютон пришел к совершенно правильному заключению, что радуга в небе — это результат успешного сотрудничества между солнцем, несметным числом дождевых капель и нашими глазами, которые должны смотреть на эти капли строго под прямым углом.

Чтобы понять, как получается радуга, следует разобраться, что происходит, когда свет проникает в дождевую каплю. Но помните, что все, что я буду говорить об одной капле, на самом деле относится к бесчисленному числу капель, из которых состоит любая радуга.

Как преломляется свет

Когда луч света проникает в каплю дождя и преломляется,он раскладывается на составляющие его цвета. Красный свет преломляется, или изгибается, меньше всех, а фиолетовый — сильнее всех.

Все эти разноцветные лучи продолжают свой путь к тыльной части дождевой капли. Одни проникают в нее и выходят, а другие отскакивают назад, или отражаются, под некоторым углом на переднюю часть капли. По сути, часть света отражается более одного раза, но для нас этот факт пока неважен; он станет важным чуть позже. На данный же момент нас интересует свет, который отражается только единожды. Когда он выходит из передней части капли, некоторая его часть снова преломляется, далее отделяя друг от друга цветные лучи разного цвета.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

После того как лучи солнечного света преломляются, отражаются и преломляются снова на выходе из капли, они уже направлены практически в обратную сторону.

Главная причина, почему мы видим радугу, — красный свет выходит из капли под углом от первоначального направления солнечного света при его проникновении в каплю, который всегда меньше 42 градусов.

То же самое относится ко всем дождевым каплям, потому что солнце, по сути, находится бесконечно далеко от них. Угол, под которым красный свет выходит из капли, может быть каким угодно от 0 до 42 градусов, но никогда не превышает 42 градусов, и этот максимальный угол для каждого цвета разный. Для фиолетового света он около 40 градусов. Именно из-за разных максимальных углов для каждого цвета радуга состоит из разноцветных полос.

Что нужно охотнику за радугами

Как увидеть радугу? Вот научный совет. Прежде всего доверяйте своей интуиции, подсказывающей вам, когда можно увидеть радугу: когда выглядывает солнце перед или сразу после дождя. Почувствовав, что все идет к этому, сделайте следующее. Во-первых, повернитесь затылком к солнцу, затем найдите тень своей головы и посмотрите под углом 42 градуса в любом направлении от воображаемой линии — мысленно нарисуйте линию, идущую от Солнца через вашу голову к дальнему концу вашей тени на земле (она будет располагаться параллельно направлению солнечных лучей, тянущихся к дождевым каплям).

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Если солнечного света достаточно, равно как и количества дождевых капель, это сотрудничество света и капель будет эффективным и вы увидите в небе красочную дугу.

Предположим, что солнца вам совсем не видно — оно спрятано за облаками или зданиями, но тем не менее явно светит.

Тогда вы все равно сможете увидеть радугу, если только между солнцем и каплями нет облаков. Потому что знаете, как правильно смотреть (помните про угол в 42 градуса).

Зная, как найти на небе радугу, вы наверняка начнете искать ее повсюду. Я, признаться, часто просто не способен бороться с этим искушением. Однажды мы со Сьюзен ехали домой, и начался дождь. Поскольку мы двигались прямо на запад, в сторону солнца, я, несмотря на плотное движение, свернул на обочину, вышел из машины и посмотрел назад. Это была неописуемая красота!

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Всякий раз, проходя мимо фонтана в яркий солнечный день, я стараюсь встать так, чтобы поискать радугу там, где, как я знаю, она должна находиться. Попробуйте сами, когда будете проходить мимо фонтана. Встаньте между солнцем и фонтаном спиной к солнцу и не забудьте, что брызги фонтана работают точно так же, как капли дождя в небе.

Найдите тень своей головы на земле и мысленно нарисуйте воображаемую линию. Теперь смотрите под углом 42 градуса от этой линии. Если в этом направлении достаточно капель, вы увидите сначала красную полосу радуги, а потом и все остальные.

Как образуется двойная радуга

Если вы видели двойную радугу, то наверняка заметили, что вторичная радуга менее яркая, чем первичная. Однако вы наверняка не обратили внимания, что порядок цветов во вторичной радуге обратный порядку в первичной: синий (фиолетовый) находится снаружи, а красный внутри.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Двойная радуга на водопаде Виктория, — источник.

Как образуется двойная радуга? Одни световые лучи, проникающие в капли, отражаются всего один раз, другие перед выходом из капли отражаются дважды. Хотя световые лучи, проникающие в любую заданную дождевую каплю, могут отражаться внутри нее многократно, первичная радуга состоит только из тех, которые отразились один раз. А вот вторичная радуга, напротив, создается из лучей, которые отражаются перед преломлением на выходе внутри капли дважды.

Из-за этого дополнительного отскока внутри капли цвета во вторичной радуге следуют в порядке, обратном порядку в первичной радуге.

Причина, по которой вторая радуга появляется на небе в месте, отличном от первой, заключается в том, что дважды отраженные красные лучи выходят из капли под углами, которые всегда больше (да-да, больше), чем примерно 50 градусов, а дважды отраженные синие лучи — под углом, всегда большим, чем 53 градуса. Таким образом, вторую радугу надо искать в 10 градусах от первой.

А то, что она менее яркая, объясняется тем, что света который отражается внутри капли дважды, намного меньше, чем света, который отражается один раз; следовательно, света для создания вторичной радуги гораздо меньше. По этой же причине увидеть вторичную радугу куда труднее, чем первичную.

Теперь, когда вы знаете, что она часто сопровождает первичную радугу и где ее искать, вы увидите ее много-много раз.

Как сделать радугу самому

Итак, вооружившись информацией о радугах, вы можете произвести небольшое оптическое волшебство и собственноручно создать радугу в своем дворе или даже просто на тротуаре — с помощью обычного садового шланга. Кстати, создать собственную радугу можно, даже когда солнце находится в зените, что в природе случается очень редко.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Если на конце вашего шланга есть насадка, отрегулируйте его в тонкую струйку, чтобы капли получались достаточно маленькими, и когда солнце будет высоко в небе, направьте шланг на землю и начните распыление. Вы не увидите сразу весь круг, но кусочки радуги заметите. А перемещая носик шланга по кругу, вы, часть за частью, сможете увидеть целый круг радуги. Почему придется действовать таким образом? Потому что у вас нет глаз на затылке!

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Третья радуга

Студенты часто спрашивают меня, а бывает ли третичная радуга. Ответ: и да и нет. Третичная радуга, как вы могли догадаться, — результат тройного отражения света внутри капли.

В центре такой радуги расположено солнце, и, как и первичная радуга с центром в точке солнечного противостояния, она также имеет радиус около 42 градусов, и ее красная полоса находится на внешней стороне. Таким образом, чтобы увидеть третичную радугу, вам нужно смотреть в сторону солнца, а капли дождя должны быть между ними и вами. Но при таком раскладе вы почти никогда не увидите солнца.

на каком расстоянии видно радугу. Смотреть фото на каком расстоянии видно радугу. Смотреть картинку на каком расстоянии видно радугу. Картинка про на каком расстоянии видно радугу. Фото на каком расстоянии видно радугу

Тройная радуга. Подлинная фотография или фотошоп? Судя по словам Уолтера Левина, второе. В любом случае, выглядит завораживающе, — источник.

Есть и другие проблемы: много солнечного света будет проходить через капли, вообще не отражаясь, что приведет к очень яркому и большому свечению вокруг солнца, в результате чего увидеть третичную радугу будет практически невозможно. А еще она более блеклая, чем вторичная. Кроме того, гораздо шире первичной и вторичной, следовательно, и без того слабый свет радуги распределяется по небу еще сильнее и увидеть ее труднее.

Насколько мне известно, фотографий третичных радуг не существует, и я лично не знаю никого, кто бы их когда-либо видел. Тем не менее отчеты о наблюдениях за этим природным явлением имеются.

Радуги — наиболее известное и красочное атмосферное явление, но отнюдь не единственное. Существует целый ряд других явлений атмосферы; некоторые из них сразу бросаются в глаза, а другие, напротив, мистически загадочны. Еще больше научных фактов и объяснений читайте в книге «Мир глазами физика».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *