на каком топливе работает двигатель внутреннего сгорания
Двигатель внутреннего сгорания (устройство и принцип работы).
Продолжаем познавательную страничку.
В настоящее время двигатель внутреннего сгорания является основным видом автомобильного двигателя. Двигателем внутреннего сгорания (сокращенное наименование – ДВС) называется тепловая машина, преобразующая химическую энергию топлива в механическую работу.
Различают следующие основные типы ДВС:
• Поршневой двигатель внутреннего сгорания;
• Роторно-поршневой двигатель внутреннего сгорания;
• Газотурбинный двигатель внутреннего сгорания.
Из представленных типов двигателей самым распространенным является поршневой ДВС, поэтому устройство и принцип работы рассмотрены на его примере.
Достоинствами поршневого двигателя внутреннего сгорания, обеспечившими его широкое применение, являются:
• Автономность;
• Универсальность (сочетание с различными потребителями);
• Невысокая стоимость;
• Компактность;
• Малая масса;
• Возможность быстрого запуска;
• Многотопливность.
Вместе с тем, двигатели внутреннего сгорания имеют ряд существенных недостатков, к которым относятся:
• Высокий уровень шума;
• Большая частота вращения коленчатого вала;
• Токсичность отработавших газов;
• Невысокий ресурс;
• Низкий коэффициент полезного действия.
В зависимости от вида применяемого топлива различают следующие поршенвые ДВС:
• Бензиновые двигатели;
• Дизельные двигатели.
Альтернативными видами топлива, используемыми в двигателях внутреннего сгорания, являются природный газ, спиртовые топлива – метанол и этанол, водород.
Водородный двигатель с точки зрения экологии является перспективным, т.к. не создает вредных выбросов. Наряду с ДВС водород используется для создания электрической энергии в топливных элементах автомобилей.
Поршневой двигатель внутреннего сгорания имеет следующее общее устройство:
• Корпус;
• Кривошипно-шатунный механизм;
• Газораспределительный механизм;
• Впускная система;
• Топливная система;
• Система зажигания (бензиновые двигатели);
• Система смазки;
• Система охлаждения;
• Выпускная система;
• Система управления.
Корпус двигателя объединяет блок цилиндров и головку блока цилиндров. Кривошипно-шатунный механизм преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Газораспределительный механизм обеспечивает своевременную подачу в цилиндры воздуха или топливно-воздушной смеси и выпуск отработавших газов.
Впускная система предназначена для подачи в двигатель воздуха. Топливная система питает двигатель топливом. Совместная работа данных систем обеспечивает образование топливно-воздушной смеси. Основу топливной системы составляет система впрыска.
Система зажигания осуществляет принудительное воспламенение топливно-воздушной смеси в бензиновых двигателях. В дизельных двигателях происходит самовоспламенение смеси.
Система смазки выполняет функцию снижения трения между сопряженными деталями двигателя. Охлаждение деталей двигателя, нагреваемых в результате работы, обеспечивает система охлаждения. Важные функции отвода отработавших газов от цилиндров двигателя, снижения их шума и токсичности предписаны выпускной системе.
Система управления двигателем обеспечивает электронное управление работой систем двигателя внутреннего сгорания.
Принцип работы двигателя внутреннего сгорания основан на эффекте теплового расширения газов, возникающего при сгорании топливно-воздушной смеси и обеспечивающего перемещение поршня в цилиндре.
Работа поршневого ДВС осуществляется циклически. Каждый рабочий цикл происходит за два оборота коленчатого вала и включает четыре такта (четырехтактный двигатель):
Во время тактов впуск и рабочий ход происходит движение поршня вниз, а тактов сжатие и выпуск – вверх. Рабочие циклы в каждом из цилиндров двигателя не совпадают по фазе, чем достигается равномерность работы ДВС. В некоторых конструкциях двигателей внутреннего сгорания рабочий цикл реализуется за два такта – сжатие и рабочий ход (двухтактный двигатель).
На такте впуск впускная и топливная системы обеспечивают образование топливно-воздушной смеси. В зависимости от конструкции смесь образуется во впускном коллекторе (центральный и распределенный впрыск бензиновых двигателей) или непосредственно в камере сгорания (непосредственный впрыск бензиновых двигателей, впрыск дизельных двигателей). При открытии впускных клапанов газораспределительного механизма воздух или топливно-воздушная смесь за счет разряжения, возникающего при движении поршня вниз, подается в камеру сгорания.
На такте сжатия впускные клапаны закрываются, и топливно-воздушная смесь сжимается в цилиндрах двигателя.
Такт рабочий ход сопровождается воспламенением топливно-воздушной смеси (принудительное или самовоспламенение). В результате возгорания образуется большое количество газов, которые давят на поршень и заставляют его двигаться вниз. Движение поршня через кривошипно-шатунный механизм преобразуется во вращательное движение коленчатого вала, которое затем используется для движения автомобиля.
При такте выпуск открываются выпускные клапаны газораспределительного механизма, и отработавшие газы удаляются из цилиндров в выпускную систему, где производится их очистка, охлаждение и снижение шума. Далее газы поступают в атмосферу.
Рассмотренный принцип работы двигателя внутреннего сгорания позволяет понять, почему ДВС имеет небольшой коэффициент полезного действия — порядка 40%. В конкретный момент времени как правило только в одном цилиндре совершается полезная работа, в остальных – обеспечивающие такты: впуск, сжатие, выпуск.
Вот так вот, Друзья! Благодарю за внимание!
Топливо для двигателей внутреннего сгорания
Основными свойствами бензина, характеризующими его эксплуатационные качества, являются испаряемость, теплота сгорания и детонационная стойкость.
Испаряемость бензина зависит, главным образом, от его фракционного состава, который определяется температурой перегонки 10,50 к 90% его объема. Чем больше в бензине легких фракций, т.е. его составляющих частей, полученных при более низкой температуре переработки нефти, тем лучше испаряемость бензина.
Теплотой сгорания топлива называется качество теплоты, которое выделяется при его полном сгорании в нормальных условиях. Бензин, также как и дизельное топливо, имеет высокую теплоту сгорания, составляющую около 44 МДЖ/кг.
Детонационную стойкость бензина оценивают октановым числом. Этот показатель определяется на специальной установке путем сравнения испытуемого бензина с эталонным топливом (смесь изооктана с гектаном). Чем больше октановое число бензина, тем меньше он детонирует и тем большую степень сжатия может иметь двигатель. Для повышения октанового числа к бензину добавляют антидетонаторы. Наиболее сильным антидетонатором является этиловая жидкость. Такой бензин называется этилированным. Этиловая жидкость содержит свинец, поэтому этилированные бензины ядовиты, для предупреждения их окрашивают в красно-оранжевый или сине-зеленый цвет.
Основными свойствами дизельного топлива являются: вязкость, температура помутнения и застывания, испаряемость, способность обеспечить мягкую работу двигателя, содержание в топливе серы, склонность к нагарообразованию.
Вязкость топлива определяет его подачу и впрыск в цилиндры, а также способность смазывать детали топливо подающей аппаратуры. Оптимальной считается вязкость топлива 2.5. 8,5 сСт. Помутнение топлива и затем и его застывание происходит при выделении в нем кристаллов парафина вследствие понижения температуры; этот показатель определяет марку и условия применение топлива.
Испаряемость дизельного топлива характеризует его способность к быстрому испарению и самовоспламенению в камере сгорания двигателя; это свойство оценивается фракционным составом (температурой выкипания 50% и 90% перегоняемого топлива).
Более высокое цетановое число показывает, что топливо может обеспечить более мягкую работу двигателя. Склонность топлива к образованию нагара оценивается его коксуемостью, которая должна быть не более 0,05%.
Содержание серы в топливе характеризует износостойкость деталей двигателя, поэтому эта величина строго ограничивается. По ГОСТ 300-82 дизельное топливо выпускается трех марок:
Л (летнее), 3 (зимнее), А (арктическое). По содержанию серы дизельное топливо подразделяется на два типа: не более 0,2%, не более 0,5%.
Только качественная недорогая мебель производства России. Вся мебель проверена специалистами.
Топлива и способы смесеобразования, применяемые в двигателях внутреннего сгорания
В двигателях внутреннего сгорания используются различные: газообразные, жидкие и даже твердые топлива, хотя практическое значение имеют только некоторые из них. Непосредственное сжигание, например, пылевидного твердого топлива в цилиндрах двигателя технически вполне осуществимо, и такие попытки имели место. Однако золообразование в цилиндрах, чрезмерно высокий износ двигателя и другие связанные с этим трудности до сих пор не преодолены. Поэтому твердые топлива предварительно газифицируются в специальных установках — газогенераторах или же используются как сырье для получения жидких топлив, например бензола. Таким образом, для приготовления рабочей смеси в двигателях внутреннего сгорания используются, как правило, жидкие или газообразные топлива.
Смесеобразование в поршневых двигателях во многом зависит от вида применяемого топлива.
Газообразное топливо смешивается с воздухом на входе в двигатель в специальном смесителе, поэтому в его цилиндры поступает уже готовая горючая смесь.
Топливовоздушную смесь из жидкого топлива и воздуха готовят Двумя способами:
1) чистый воздух и жидкое топливо подаются в цилиндры двигателя раздельно и перемешиваются непосредственно в цилиндрах, образуя с остаточными газами рабочую смесь;
2) жидкое топливо перемешивается с воздухом перед поступлением в цилиндры, куда поступает готовая горючая смесь.
Следовательно, возможны два способа приготовления топливо-воздушной смеси: вне цилиндров и непосредственно в цилиндрах. В зависимости от этого двигатели внутреннего сгорания принято разделять на двигатели с внешним и внутренним смесеобразованием.
В двигателях с внешним смесеобразованием и зажиганием рабочей смеси от электрической искры, работающих на жидком топливе, горючая смесь чаще всего подготавливается в карбюраторах. Такие двигатели принято называть карбюраторными. Внутреннее смесеобразование преимущественно используется в двигателях с воспламенением рабочей смеси от тепла, накапливаемого в процессе сжатия. Такие двигатели называются двигателями с воспламенением от сжатия, или дизелями (по имени изобретателя Рудольфа Дизеля).
В практике применяются и другие сочетания методов приготовления и воспламенения рабочей смеси в поршневых двигателях, но они не изменяют основу рассмотренных методов смесеобразования.
Моторные топлива независимо от того, из какого исходного сырья и каким методом они получены, должны обладать определенными физико-химическими свойствами, обеспечивающими надежную работу двигателей, хорошую их топливную экономичность и возможно меньшие износы деталей. Экономичность двигателей, а следовательно, и общий расход горючего в известной мере зависят от теплоты сгорания топлива. Особенно большое значение это имеет для транспортных двигателей, так как радиус действия транспортных средств зависит от запаса топлива, а емкости их баков ограничены.
Газообразные и жидкие топлива нефтяного происхождения представляют собой смеси различных углеводородов широкого фракционного состава. В практике используются топлива с фракционным составом от легких газообразных до тяжелых, трудно испаряемых.
Физико-химические свойства моторных топлив, как правило, регламентируются государственными стандартами, которые обязательно учитываются при проектировании новых двигателей.
Твердые топлива — антрацит, различные угли, древесина, торф, горючие сланцы и другие — используются для получения таких газообразных топлив, как светильный, коксовый, доменный и газогенераторный газы, а также жидких топлив в виде сланцевых, угольных и других бензинов и бензолов, пригодных для сжигания в двигателях внутреннего сгорания.
Жидкие моторные топлива по роду исходного сырья подразделяются на две группы: нефтяные и ненефтяные, получаемые, например, при соответствующей переработке твердого топлива. В двигателях внутреннего сгорания в основном применяются жидкие топлива, получаемые в больших количествах путем переработки нефти. Это бензин, керосин, газойлевые и соляровые фракции и даже мазут, который используется иногда в качестве тяжелого нефтяного топлива.
Бензин представляет собой наиболее летучую жидкую часть нефти, состоящую в основном из группы индивидуальных углеводородных соединений от пентана С5Н12 до октана C8H18. Температура кипения бензиновых компонентов нефти не превышает 185-205°С.
Керосин состоит из более тяжелых углеводородов, выкипающих при температуре 290-300°С. Еще более тяжелыми фракциями являются газойль и соляровое масло. Температура выкипания углеводородов газойлевой фракции достигает 380°С, а солярового масла — 500°С.
Для карбюраторных двигателей основным топливом служит бензин, а в двигателях с воспламенением от сжатия используется дизельное топливо, основанное на смеси фракций нефти, температура кипения которых не выходит за пределы 350°С. В крупных стационарных дизелях находят применение тяжелые моторные топлива, состоящие из смеси солярового масла и мазута. Газотурбинные двигатели работают на керосине.
Нефтяное топливо в основном состоит из химических элементов: углерода С и водорода Н. Содержание углерода колеблется в пределах 85 ÷ 87%, а водорода — 13 ÷ 15%. В небольших количествах они содержат кислород О, азот N, серу S и следы воды. Эти элементы входят в нефтепродукты в виде химических соединений, главными из которых являются углеводороды, составляющие следующие группы (ряды): алканы, цикланы и ароматические углеводороды бензольного ряда.
Групповой состав углеводородных соединений оказывает большое влияние на физико-химические свойства топлив, предопределяя возможности их использования в определенных типах двигателей.
Для топлив карбюраторных двигателей важнейшим качеством является, например, детонационная стойкость. Если детонационная стойкость топлива не соответствует выбранной (завышенной) степени сжатия, то нормальное протекание процесса сгорания нарушается. Сгорание приобретает взрывной характер, порождающий ударную волну давления, которая распространяется в цилиндре со сверхзвуковой скоростью. Удары детонационной волны о стенки цилиндра и поршень при многократном отражении вызывают вибрацию стенок, воспринимаемую как характерный резкий детонационный стук. Работа двигателя с детонационным сгоранием недопустима, так как ухудшает его показатели и приводит к разрушению некоторых ответственных деталей кривошипно-шатунного механизма.
Детонационная стойкость топлив зависит от группового состава углеводородных соединений. Чем больше в топливе ароматических соединений, тем выше его детонационная стойкость.
Антидетонационные свойства топлив оцениваются октановым числом путем сравнения топлив с эталонами. В качестве эталонов приняты изооктан (и—C8H18), обладающий хорошими антидетонационными свойствами, и нормальный гептан (н — С7Н16) с низкими антидетонационными свойствами. Октановое число топлива принимается численно равным процентному содержанию изооктана в такой смеси с нормальным гептаном, которая оказывается равноценной данному топливу по детонационной стойкости при испытаниях в стандартных условиях. Октановые числа (о. ч.) современных бензинов находятся в пределах 70 ÷ 100 единиц.
Для топлив, применяемых в дизелях, важнейшим качеством является самовоспламеняемость, определяющая степень жесткости работы двигателя, о которой можно судить, например, по резкости характерного стука, возникающего при работе дизеля. Самовоспламеняемость дизельных топлив оценивается цетановым числом, которое определяют путем сравнения работы стандартного двигателя на испытуемом топливе и па смеси эталонных топлив. В качестве эталонов используются цетан (С16Н34) из группы алканов с хорошей воспламеняемостью и альфа-метилнафталин (С10Н7СН3), являющийся ароматическим углеводородом, стойким против самовоспламенения. Цетановое число топлива принимается численно равным процентному содержанию цетана в такой смеси с альфа-метил нафталином, которая по самовоспламеняемости оказывается равноценной испытуемому топливу.
Чем выше содержание алканов в дизельном топливе, тем выше его склонность к самовоспламенению и тем мягче, без сильных стуков работают дизели. Цетановое число (ц. ч.) дизельных топлив составляет примерно 45—50 единиц.
Газообразные моторные топлива широко используются для питания как транспортных, так и стационарных силовых установок.
Топлива, предназначенные для транспортных газовых двигателей, должны обладать высокой теплотой сгорания, так как иначе трудно обеспечить достаточный запас топлива при ограниченных габаритах и весе транспортных средств и их силовых устройств. Для стационарных силовых установок это требование не является существенным, поскольку они могут питаться непосредственно от источников получения газа.
В качестве газообразного топлива в двигателях внутреннего сгорания используют природные, промышленные и газогенераторные газы. Природные газы получают из скважин подземных газовых месторождений и на промыслах добычи нефти (промысловые или нефтяные газы); промышленные газы представляют собой продукты переработки нефти, твердых горючих ископаемых (например, при выжиге кокса в доменном производстве, в ряде химических производств и т. д.); газогенераторные газы получают путем газификации различных твердых топлив в газогенераторных установках.
Природные и промышленные газы в зависимости от их агрегатного состояния при использовании в качестве топлива подразделяют на два класса или группы: сжимаемые (или сжатые) и сжижаемые (или сжиженные). Эти названия групп носят условный характер, так как при глубоком охлаждении сжиженными могут быть и газы первого класса, имеющие низкую критическую температуру.
Высококалорийные газы состоят в основном из метана и имеют низшую теплоту сгорания 5500 ÷ 9000 ккал/м3 (≈ 22—36 Мдж/м3). В эту группу входят газы природные, нефтяные (промысловые) и канализационные, получающиеся при переработке сточных вод городских канализационных систем. Сюда же относится метановая фракция коксового газа.
Среднекалорийные газы содержат много водорода и окиси углерода; низшая теплота сгорания их составляет 3500 ÷ 5500 ккал/м3 (≈ 14,2—22 Мдж/м3). В основном это коксовый газ, получаемый в больших количествах при выжиге кокса.
Низкокалорийные газы характеризуются небольшим содержанием горючих компонентов, состоящих в основном из окиси углерода— 20 ÷ 30%. На инертные компоненты (балластную часть) этих газов приходится до 65%, поэтому низшая теплота сгорания их находится в пределах 1000 ÷ 3500 ккал/м3 (≈ 4—14,2 Мдж/м3). В эту группу входят доменный и различные силовые (генераторные) газы. Используются они без предварительного сжатия в основном в стационарных силовых установках.
К сжижаемым газам относятся: этан С2Н6, пропан С3Н8, бутан С4Ню. этилен С2Н4, пропилен С3НС, бутилен С4Н8 и другие компоненты нефтяных (промысловых) и промышленных газов. Низшая теплота сгорания этих газов находится в пределах 14000 ÷ 26000 ккал/м3 (56—104 Мдж/м3) — сжижаются они при обычных температурах и относительно невысоких давлениях. Это выгодно отличает их даже от высококалорийных сжимаемых газов, так как позволяет обходиться более тонкостенными баллонами, рассчитанными на рабочее давление, не превышающее 16 ÷ 20 кГ/см2 (≈ 1,6—2,0 Мдж/м2).
В качестве топлива для транспортных двигателей применяются в основном пропано-бутановые смеси.
Газообразные топлива по сравнению с бензином обладают более высокими октановыми числами, составляющими 90 ÷ 120 единиц, что позволяет повышать степень сжатия в двигателях без опасения вызвать детонационное сгорание. При работе на газообразном топливе в поршневых двигателях заметно уменьшается также износ стенок цилиндров, меньше накапливается отложений, улучшается смесеобразование, вследствие чего облегчается пуск и обеспечивается более полное сгорание топлива в цилиндрах. Поэтому газообразное топливо целесообразно использовать в автомобильных двигателях.
В поршневых двигателях с внешним смесеобразованием можно использовать только некоторые из перечисленных видов моторных топлив — газообразные и жидкие, обладающие сравнительно хорошей испаряемостью, например бензин. При использовании топлив с недостаточной испаряемостью нельзя получить на входе в цилиндры горючую смесь с нужным паросодержанием, что нарушает смесеобразование и расстраивает нормальное протекание рабочего цикла в двигателе. С точки зрения ассортимента потребляемых топлив более предпочтителен поэтому способ внутреннего смесеобразования. Двигатели с внутренним смесеобразованием при соответствующей организации процессов могут практически работать на любых жидких моторных топливах, начиная от легких, высокооктановых бензинов до тяжелых погонов нефти. Такие многотопливные двигатели получают все большее распространение.
Бензин, дизель, пропан, водород: краткий гид по видам автомобильного топлива
Не заправишь — не поедешь. Большинство водителей используют бензин (АИ-92/95 и пр.) и дизель (ДТ). Но ведь помимо традиционных типов топлива существуют газ, водород и азот. О видах автомобильных «рационов» и их особенностях — в разборе Mafin Media.
Классический поршневой двигатель внутреннего сгорания работает за счет возгорания сжатой топливовоздушной смеси. Иными словами, для того чтобы ехать, нужно постоянно сжигать топливо, заставляя внутренние части двигателя вращаться. Так устроены наиболее популярные автомобильные (и не только) моторы. Но что именно сгорает внутри цилиндров? Начнем с самого популярного.
Бензин
Латинское слово benzoe — производное от арабского lubán-ǰâvî, что означает «благовоние с острова Ява». Вероятнее всего, название связано с ароматным бензойным маслом, которое добывают из растений. Современные же бензины изготавливаются из нефти: так называемым домашним (устаревшим) способом прямой перегонки и современными методами, которые могут сочетать как термическую, так и химическую обработку «черного золота».
Для конечного покупателя все сводится к тому, чтобы купить бензин, который подходит двигателю по октановому числу. Проще говоря, чем выше октановое число, тем лучше бензин сгорает и тем реже он «детонирует», то есть взрывается. Подобные взрывы в двигателе не опасны для здоровья окружающих, но могут навредить банковскому счету владельца авто: напоенный неподходящим горючим двигатель (особенно современный) быстро придет в негодность.
В России пальму первенства удерживают 95-й и 92-й бензины, хотя существуют также АИ-98 и АИ-100, предназначенные для высокофорсированных двигателей. Какой из них заливать именно в ваш автомобиль — всегда можно узнать в руководстве по эксплуатации авто или прочитать на внутренней стороне лючка бензобака.
Дизельное топливо
Дизтопливо, или, по старинке, «солярка»: название происходит от немецкого solaröl — «солнечное масло», желтоватая жидкость, получившаяся еще в XIX веке при перегонке нефти. При этом солярка как таковая в автомобилях не используется. А вот автомобильное дизельное топливо предназначено для моторов, отличных от бензиновых способом воспламенения.
Если в бензиновом моторе поджигание смеси происходит за счет электрических искр, то в дизельном — за счет сжатия. Важнейший показатель здесь — цетановое число, определяющее скорость воспламенения горючего. В среднем цетановые числа колеблются от 45 до 55 единиц в зависимости от типа и качества топлива. По типу солярка делится на летнюю, зимнюю и арктическую. Они отличаются температурой загустения. Самые «суровые» зимние топлива могут сгорать даже при температуре минус 50 °C!
Пропан и бутан
Пропан и бутан — самые известные альтернативные виды топлива. Обычно они смешиваются и для краткости именуются просто пропаном. При помощи относительно недорогих переделок обычный атмосферный бензиновый мотор можно «научить» им питаться.
Пропан имеет меньшую по сравнению с бензином плотность, поэтому расход будет выше — но и стоит газ обычно раза в два дешевле. Следует учесть, что внесение таких изменений в конструкцию автомобиля почти со стопроцентной вероятностью приведет к потере гарантии, поэтому перед газификацией нового авто стоит просчитать риски: при небольших пробегах экономия, скорее всего, будет незаметной.
Метан и водород
Несмотря на раннее появление двигателя на водороде, этот газ и по сей день используется нечасто. Основной принцип работы двигателя тот же, но дополнительно для работы ДВС на водороде нужны либо электролизер (установка, добывающая газ из воды), либо водородный топливный элемент — «батарейка», которую нужно заправлять. Обе конструкции значительно повышают стоимость авто, поэтому большинство водородных автомобилей остаются концепт-карами.
Еще слабее распространено питание автомобиля азотом : этот газ сгорает быстрее традиционных видов топлива и требует не только баллонов для хранения, но и определенной переделки мотора. Закись азота N2O периодически впрыскивается в камеру сгорания двигателя для кратковременного получения дополнительной мощности. В этом случае она смешивается с обычной топливно-воздушной смесью и позволяет мотору «съесть» больше, увеличивая отдачу. В гражданской эксплуатации такие доработки используются крайне редко, оставаясь продуктом индивидуального тюнинга.
Биодизель/биоэтанол
Биодизелем называют топливо, добываемое из растительного, соевого и рапсового масел, а также животных жиров. При смешивании в небольших пропорциях со стандартным ДТ этот вид топлива может заливаться в мотор без изменения конструкции и обладает завидной экологичностью за счет биоразлагаемости. Однако за все нужно платить: биодизель требует площадей для посадки растений и обходится дороже своего собрата без приставки био-.
Как и биодизель, биоэтанол требует посевных площадей, например с сахарным тростником, и с традиционными бензином, газом и дизельным топливом полноценно конкурировать пока не может.