на каком уровне модели osi протокольный блок данных pdu называют сегментом
Уровни OSI
Каждый уровень модели OSI отвечает за часть процесса обработки по подготовке данных к передаче по сети.
Согласно модели OSI в процессе передачи данные буквально проходят сверху вниз по уровням модели OSI отправляющего компьютера и вверх по уровням модели OSI принимающего компьютера. На принимающем компьютере происходит процесс, обратный инкапсуляции. Биты прибывают на физический уровень модели OSI принимающего компьютера. В процессе перемещения вверх по уровням OSI принимающего компьютера данные поступят на прикладной уровень.
Сетевой уровень
На сетевом уровне OSI реализованы протоколы IP(Структура межсетевого протокола IPv4,IPv6 vs IPv4), IPX, IGMP, ICMP, ARP.
Нужно понимать почему возникла необходимость к построению сетевого уровня, почему сети построенные с помощью средств канального и физического уровня не смогли удовлетворять требования пользователей.
Создать сложную, структурированную сеть с интеграцией различных базовых сетевых технологий, можно и средствами канального уровня: для этого могут быть использованы некоторые типы мостов и коммутаторов. Естественно в целом трафик в такой сети складывается случайным образом, но с другой стороны он характеризуется и некоторыми закономерностями. Как правило, в такой сети некоторые пользователи, работающие над общей задачей, (например, сотрудники одного отдела) чаще всего обращаются с запросами либо друг к другу, либо к общему серверу, и только иногда им необходим доступ к ресурсам компьютеров другого отдела. Поэтому в зависимости от сетевого трафика компьютеры в сети разделяют на группы, которые называют сегменты сети. Компьютеры объединяются в группу, если большая часть их сообщений предназначена (адресована) компьютерам этой же группы. Разделение сети на сегменты, могут осуществлять мосты и коммутаторы. Они экранируют локальный трафик внутри сегмента, не передавая за его пределы никаких кадров, кроме тех, которые адресованы компьютерам, находящимся в других сегментах. Таким образом, одна сеть распадается на отдельные подсети. Из этих подсетей в дальнейшем могут быть построены составные сети достаточно крупных размеров.
Но, воплощение этой идеи в жизнь с помощью повторителей, мостов, и коммутаторов имеет очень существенные ограничения и недостатки.
На каком уровне модели osi протокольный блок данных pdu называют сегментом
Здесь необходимо добавить понятие полезной нагрузки. Каждый уровень несет в себе какое-то количество информации. Часть этой информации является служебной для этого уровня, например, адрес. IP-адрес сайта не несет для нас никакой полезной информации. Нам важны только котики, которых нам показывает сайт. Так вот эта полезная нагрузка переносится в той части уровня, который называется protocol data unit (PDU).
Уровни Модели OSI
Рассмотрим каждый уровень Модели OSI подробнее.
1 уровень. Физический (physical). Единицей нагрузки (PDU) здесь является бит. Кроме единиц и нулей физический уровень не знает ничего. На этом уровне работают провода, патч панели, сетевые концентраторы (хабы, которые сейчас уже сложно найти в привычных нам сетях), сетевые адаптеры. Именно сетевые адаптеры и ничего более из компьютера. Сам сетевой адаптер принимает последовательность бит и передает её дальше.
4 уровень. Транспортный (transport). PDU сегмент (segment)/датаграмма (datagram). На этом уровне появляются понятия портов. Тут трудятся TCP и UDP. Протоколы этого уровня отвечают за прямую связь между приложениями и за надежность доставки информации. Например, TCP умеет запрашивать повтор передачи данных в случае, если данные приняты неверно или не все. Так же TCP может менять скорость передачи данных, если сторона приема не успевает принять всё (TCP Window Size).
Следующие уровни “правильно” реализованы лишь в RFC. На практике же, протоколы описанные на следующих уровнях работают одновременно на нескольких уровнях модели OSI, поэтому нет четкого разделения на сеансовый и представительский уровни. В связи с этим в настоящее время основным используемым стеком является TCP/IP, о котором поговорим чуть ниже.
6 уровень. Представительский (presentation). PDU данные (data). Преставление и шифрование данных. JPEG, ASCII, MPEG.
Заключение
Модель OSI: уровни модели OSI, протоколы, история.
Сетевая модель OSI (Open Systems Interconnection) — это концептуальная модель, которая описывает и стандартизирует функции компьютерных систем при их взаимодействии друг с другом. Каждый из семи уровней накладывается поверх предыдущего: от физического до прикладного, взаимодействуя с нижним и предоставляя средства для уровня выше.
К настоящему времени стек протоколов TCP/IP практически вытеснил оригинальный стек OSI из реального использования. Модель TCP/IP не такая полная и включает только четыре уровня, но она стала стандартом де-факто.
Сравнение OSI и TCP/I
Поскольку модель OSI лучше проработана, она считается эталонной и используется для обучения.
Зачем понадобилась концептуальная модель?
В конце 60-х гг в разных уголках мира начали строить первые компьютерные сети для университетов, госучреждений, армии. Многие сети разрабатывали частные компании. Например, IBM внедряла фирменную архитектуру Systems Network Architecture, а Digital Equipment Corporation — DECnet. В 1969 году минобороны США запустило свою сеть ARPANET.
Логическая карта ARPANET, март 1977
Суть в том, что все разрозненные сети проектировали по собственным принципам, а часто на собственных стандартах и протоколах. Вскоре стало ясно, что для глобального взаимодействия нужно выработать стандарты и методы сетевого взаимодействия более высокого уровня.
В 1977 году Международная организация по стандартизации (ISO) сформировала комитет Open Systems Interconnection под председательством Чарльза Бахмана. Он говорит, что спроектировал дизайн системы под сильным влиянием IBM Systems Network Architecture (SNA) — проприетарной сетевой архитектуры для взаимодействия глобальной сети мейнфреймов IBM, там семиуровневый стек сетевых протоколов, очень похожий на OSI.
Уровни модели OSI
Вот уровни модели OSi сверху вниз, с указанием функций и PDU (блоки данных протокола) для уровней 1−4:
7. Прикладной (application). Доступ к сетевым службам
6. Представления (presentation). Представление и шифрование данных
5. Сеансовый (session). Управление сеансом связи.
4. Транспортный (transport). Прямая связь между конечными пунктами и надёжность. Сегменты и датаграммы
3. Сетевой (network). Определение маршрута и логическая адресация. Пакеты
2. Канальный (data link). Физическая адресация. Кадры (фреймы)
1. Физический (physical). Работа со средой передачи, сигналами и двоичными данными. Биты, символы
Каждому уровню OSI соответствуют определённые функции, протоколы, оборудование и PDU. Для уровней 5-7 это любые данные.
Благодаря жёсткой абстракции в OSI реализована практически абсолютная гибкость. Пока слои реализуют правильный интерфейс сверху и ожидают правильного интерфейса снизу, можно использовать любую реализацию данного слоя.
Оригинальный стек модели OSI
модель OSI опубликовали в 1984 года как международный стандарт ISO 7498 и рекомендации X.200. Но разработка слишком затянулась, уже 1 января 1983 года минобороны США опубликовало распоряжение об обязательном использовании стека TCP/IP в сети ARPANET. Этот день считается датой рождения современного Интернета.
Вскоре после концептуальной модели OSI приняли отдельные стандарты OSI для транспортных протоколов, электронной почты, электронных каталогов, управления сетью и многих других функций. На практике эти «настоящие» протоколы OSI с их функциями не совсем вписываются в реально используемый стек TCP/IP. Например, в модели OSI канальный уровень 2 реализован в виде протокола X.212. Типичными протоколами уровня 3 являются Connectionless Network Protocol (CLNP) и Connection Oriented Network Protocol. Адресация OSI на этих уровнях основана на технологии Network Service Access Point или NSAP. Точки NSAP не включают информацию о маршрутизации, как в случае с IP-адресами, поэтому процесс маршрутизации трафика к конкретному NSAP включает «перевод» NSAP в более подробные типы адресации, которые могут зависеть от используемого уровня 2. В целом, адресация OSI в современном использовании во многом зависит от деталей конкретного приложения.
Транспортный уровень 4 добавляет дополнительные возможности по сравнению с уровнем 3, включая мультиплексирование нескольких потоков, восстановление ошибок, управление потоком и управление соединением (например, повторные попытки и повторные подключения). Существует пять классов уровня 4, от TP0 до высоконадёжного TP4, что не совсем логично с современной точки зрения. Поскольку уровень 4 предлагает общие функции обмена сообщениями, он, возможно, является ближайшим эквивалентом современных протоколов TCP и UDP в IP-стеке, хотя многие элементы UDP и TCP присутствуют и на более низких уровнях.
Сеансовый уровень 5 добавляет управление ассоциациями между хостами и статусом соединения между ними. Это немного запутано, поскольку в модели IP нет соответствующего эквивалента. Сеансовый уровень OSI определяется стандартом X.215, который отвечает за установку соединения.
Шестого уровня представления тоже не существует в стеке IP, и его ещё сложнее понять. Основная концепция заключается в том, что приложения должны взаимодействовать с использованием абстрактных представлений, а не реальных значений, закодированных в канале передачи. Эти абстрактные представления затем переводят в фактические значения, основанные на возможностях базовой сети. То есть это сжатие данных, шифрование, изменение кодировки и др. Уровень представления OSI реализован в протоколе X.216.
Наконец, самый верхний прикладной уровень 7. Хотя у него нет чётких определений, стек OSI поставлялся с большим количеством протоколов прикладного уровня. Можно вспомнить X.500, протокол службы каталогов, который считается прародителем LDAP, а также X.509, который описывает функцию криптографических сертификатов в экосистеме X.500. Формат и концепции сертификата X.509 непосредственно используются сегодня в TLS и других криптографических реализациях. Есть также протокол службы обмена сообщениями X.400, по сути, OSI-версия электронной почты. Как и следовало ожидать, он значительно мощнее и сложнее, чем электронная почта в современном виде. Долгое время Microsoft Exchange представлял собой наиболее полную реализацию X.400.
Описание стека OSI определено стандартами МСЭ, которые можно купить на официальном сайте ISO.
Другие протоколы в модели OSI
Хотя модель OSI как стек оригинальных протоколов устарела, любую технологию и протокол связи можно спроецировать на один или несколько уровней OSI. Вот некоторые примеры.
Многие протоколы работают на нескольких уровнях OSI. Например, подуровни LLC (Logical Link Control) и MAC (Media Access Control) в IEEE 802. Или набор протоколов X.25, который покрывает три последних уровня.
1 (физический)
Физический уровень Bluetooth, шина CAN, DSL, Ethernet (10BASE-F и др.), GSM, физические уровни IEEE 802.15.4, IEEE 1394, IRDA, ISDN, I²C, LoRa, OTN, SMB, V.92, USB, PCI Express, физический уровень 802.11 Wi-Fi, IEEE 802.15.7
2 (канальный)
ARCnet, ATM, CDP, CAN, Ethernet, EAPS, FDDI, Frame Relay, IEEE 802.2 (функции подуровня LLC для подуровня MAC в IEEE 802), сеть IEEE 802.11, I²C, LLDP, PPP, IEEE 802.1aq, Token Ring
3 (сетевой)
CLNS, DDP, EIGRP, ICMP, IGMP, IPsec, IPv4/IPv6, IPX, OSPF, PIM, RIP
4 (транспортный)
ATP, CUDP, DCCP, FCP, IL, MPTCP, RDP, RUDP, SCTP, SPX, SST, TCP, UDP, UDP-Lite, µTP
5 (сеансовый)
ADSP, ASP, H.245, ISO-SP (X.225, ISO 8327), iSNS, L2F, L2TP, NetBIOS, PAP, PPTP, RPC, RTCP, SMPP, SCP, SOCKS, ZIP, SDP
6 (представления)
AFP, ICA, LPP, NCP, NDR, Tox, XDR, X.25
7 (прикладной)
Telnet, FTP, TFTP, SMTP, DNS, BOOTP, SNMP, CMOT
На уровнях 5−7 работают современные прикладные протоколы, таких как Bitcoin, BitTorrent, HTTP, IRV, IPFS, NTP, RDP, SIP, Tor, Tox, WebRTC, XMPP и многие другие.
Противостояние с TCP/IP
Разработка OSI продвигались настолько медленно, что вызывала сильное раздражение у всей индустрии. К началу 90-х годов стало понятно, что она не поспевает за реальным развитием телекома.
Хотя правительства по всему миру рекомендовали соблюдать стандарты OSI, на практике телекомы предпочитали быстро соединять разнородные гетерогенные системы по протоколам TCP/IP, не соблюдая порядок и иерархию OSI. Интернет-инженер Маршалл Роуз писал в учебнике 1990 года, что «интернет-сообщество изо всех сил старается игнорировать сообщество OSI. По большому счету, технология OSI уродлива по сравнению с технологией Интернета».
Предвзятость интернет-сообщества привела к тому, что оно отвергало любые технические идеи OSI. Например, в 1992 году некоторые руководители IETF предложили принять продвинутый стандарт ISO Connectionless Network Protocol вместо IPv4, но сообщество отвергло эту идею.
Ещё одно преимущество TCP/IP было в том, что интернет-протоколы можно внедрять бесплатно, а чтобы использовать стандарты OSI, производители и интеграторы должны покупать бумажные копии стандартов у ISO.
Инженеры признавали, что у OSI архитектурно более проработанная модель, она гораздо более полная, более тщательная. Но на практике проще взять простой в реализации TCP/IP. Впрочем, модель OSI никто не отменял, и в неё вполне вписывается даже стек TCP/IP.
Модель OSI как теоретическая конструкция для обучения
Модель OSI сейчас используется в качестве эталонной, справочной модели для обучения студентов. Оригинальные протоколы OSI не получили распространения. Некоторые инженеры утверждают, что эталонная модель OSI по-прежнему актуальна для облачных вычислений. Другие говорят, что оригинальная модель не соответствует современным сетевым протоколам, а вместо неё лучше использовать упрощённый подход.
В отличие от большинства компьютерных сетей, которые ставят целью наладить простой канал связи с некоторыми дополнительными функциями, модель OSI пыталась закодировать в модели практически все возможные варианты приложений. Это привело к оверинжинирингу. Но история показала, что для сетей важнее простота реализации и удобство использования.
Уровни эталонной модели OSI
Что такое модель OSI?
В данной статье мы рассмотрим назначение уровней эталонной модели osi, с подробным описанием каждого из семи уровней модели.
Многоуровневый подход:
Эталонная Модель Взаимосвязи Открытых Систем (семиуровневая модель osi) введена в 1977 г.
После утверждения данной модели, проблема взаимодействия была разделена (декомпозирована) на семь частных проблем, каждая из которых может быть решена независимо от других.
Уровни эталонной модели
Уровни эталонной модели OSI представляют из себя вертикальную структуру, где все сетевые функции разделены между семью уровнями. Следует особо отметить, что каждому такому уровню соответствует строго описанные операции, оборудование и протоколы.
Взаимодействие между уровнями организовано следующим образом:
Так как семиуровневая модель osi состоит из строгой соподчиненной структуры, то любой более высокий уровень использует функции нижележащего уровня, причем распознает в каком именно виде и каким способом (т.е. через какой интерфейс) нужно передавать ему поток данных.
Следует отметить, что помимо добавления служебной информации в виде заголовка вначале сообщения, уровни могут добавлять служебную информацию и в конце сообщения, который называется «трейлер».
Когда сообщение достигло физического уровня, сообщение уже полностью сформировано для передачи по каналу связи к узлу назначения, то есть содержит в себе всю служебную информацию добавленную на уровнях модели OSI.
Помимо термина «данные» (data), которое используется в модели OSI на прикладном, представительном и сеансовом уровнях, используются и другие термины на других уровнях модели OSI, чтобы можно было сразу определить на каком уровне модели OSI выполняется обработка.
Функции физического уровеня
Функции канального уровня
Для ЛВС канальный уровень разбивается на два подуровня:
Функции сетевого уровня
Оборудование, работающее на сетевом уровне: маршрутизатор.
Виды протоколов сетевого уровня:
Функции транспортного уровня модели osi
Функции сеансового уровня
Функции представительного уровня
Функции прикладного уровня модели osi
Сетезависимые и сетенезависимые уровни семиуровневой модели osi
По своим функциональным возможностям семь уровней модели OSI можно отнести к одной из двух групп:
Простое пособие по сетевой модели OSI для начинающих
Открытая сетевая модель OSI (Open Systems Interconnection model) состоит из семи уровней. Что это за уровни, как устроена модель и какова ее роль при построении сетей — в статье.
Модель OSI является эталонной. Эталонная она потому, что полное название модели выглядит как «Basic Reference Model Open Systems Interconnection model», где Basic Reference Model означает «эталонная модель». Вначале рассмотрим общую информацию, а потом перейдем к частным аспектам.
Принцип устройства сетевой модели
Сетевая модель OSI имеет семь уровней, иерархически расположенных от большего к меньшему. То есть, самым верхним является седьмой (прикладной), а самым нижним — первый (физический). Модель OSI разрабатывалась еще в 1970-х годах, чтобы описать архитектуру и принципы работы сетей передачи данных. Важно помнить, что данные передаются не только по сети интернет, но и в локальных сетях с помощью проводных или беспроводных соединений.
В процессе передачи данных всегда участвуют устройство-отправитель, устройство-получатель, а также сами данные, которые должны быть переданы и получены. С точки зрения рядового пользователя задача элементарна — нужно взять и отправить эти данные. Все, что происходит при отправке и приеме данных, детально описывает семиуровневая модель OSI.
На седьмом уровне информация представляется в виде данных, на первом — в виде бит. Процесс, когда информация отправляется и переходит из данных в биты, называется инкапсуляцией. Обратный процесс, когда информация, полученная в битах на первом уровне, переходит в данные на седьмом, называется декапсуляцией. На каждом из семи уровней информация представляется в виде блоков данных протокола — PDU (Protocol Data Unit).
Рассмотрим на примере: пользователь 1 отправляет картинку, которая обрабатывается на седьмом уровне в виде данных, данные должны пройти все уровни до самого нижнего (первого), где будут представлены как биты. Этот процесс называется инкапсуляцией. Компьютер пользователя 2 принимает биты, которые должны снова стать данными. Этот обратный процесс называется декапсуляция. Что происходит с информацией на каждом из семи уровней, как и где биты переходят в данные мы разберем в этой статье.
Первый, физический уровень (physical layer, L1)
Начнем с самого нижнего уровня. Он отвечает за обмен физическими сигналами между физическими устройствами, «железом». Компьютерное железо не понимает, что такое картинка или что на ней изображено, железу картинка понятна только в виде набора нулей и единиц, то есть бит. В данном случае бит является блоком данных протокола, сокращенно PDU (Protocol Data Unit).
Каждый уровень имеет свои PDU, представляемые в той форме, которая будет понятна на данном уровне и, возможно, на следующем до преобразования. Работа с чистыми данными происходит только на уровнях с пятого по седьмой.
Устройства физического уровня оперируют битами. Они передаются по проводам (например, через оптоволокно) или без проводов (например, через Bluetooth или IRDA, Wi-Fi, GSM, 4G и так далее).
Второй уровень, канальный (data link layer, L2)
Когда два пользователя находятся в одной сети, состоящей только из двух устройств — это идеальный случай. Но что если этих устройств больше?
Второй уровень решает проблему адресации при передаче информации. Канальный уровень получает биты и превращает их в кадры (frame, также «фреймы»). Задача здесь — сформировать кадры с адресом отправителя и получателя, после чего отправить их по сети.
У канального уровня есть два подуровня — это MAC и LLC. MAC (Media Access Control, контроль доступа к среде) отвечает за присвоение физических MAC-адресов, а LLC (Logical Link Control, контроль логической связи) занимается проверкой и исправлением данных, управляет их передачей.
На втором уровне OSI работают коммутаторы, их задача — передать сформированные кадры от одного устройства к другому, используя в качестве адресов только физические MAC-адреса.
Третий уровень, сетевой (network layer, L3)
На третьем уровне появляется новое понятие — маршрутизация. Для этой задачи были созданы устройства третьего уровня — маршрутизаторы (их еще называют роутерами). Маршрутизаторы получают MAC-адрес от коммутаторов с предыдущего уровня и занимаются построением маршрута от одного устройства к другому с учетом всех потенциальных неполадок в сети.
На сетевом уровне активно используется протокол ARP (Address Resolution Protocol — протокол определения адреса). С помощью него 64-битные MAC-адреса преобразуются в 32-битные IP-адреса и наоборот, тем самым обеспечивается инкапсуляция и декапсуляция данных.
Четвертый уровень, транспортный (transport layer, L4)
Все семь уровней модели OSI можно условно разделить на две группы:
Уровни группы Media Layers (L1, L2, L3) занимаются передачей информации (по кабелю или беспроводной сети), используются сетевыми устройствами, такими как коммутаторы, маршрутизаторы и т.п. Уровни группы Host Layers (L4, L5, L6, L7) используются непосредственно на устройствах, будь то стационарные компьютеры или портативные мобильные устройства.
Четвертый уровень — это посредник между Host Layers и Media Layers, относящийся скорее к первым, чем к последним, его главной задачей является транспортировка пакетов. Естественно, при транспортировке возможны потери, но некоторые типы данных более чувствительны к потерям, чем другие. Например, если в тексте потеряются гласные, то будет сложно понять смысл, а если из видеопотока пропадет пара кадров, то это практически никак не скажется на конечном пользователе. Поэтому, при передаче данных, наиболее чувствительных к потерям на транспортном уровне используется протокол TCP, контролирующий целостность доставленной информации.
Для мультимедийных файлов небольшие потери не так важны, гораздо критичнее будет задержка. Для передачи таких данных, наиболее чувствительных к задержкам, используется протокол UDP, позволяющий организовать связь без установки соединения.
При передаче по протоколу TCP, данные делятся на сегменты. Сегмент — это часть пакета. Когда приходит пакет данных, который превышает пропускную способность сети, пакет делится на сегменты допустимого размера. Сегментация пакетов также требуется в ненадежных сетях, когда существует большая вероятность того, что большой пакет будет потерян или отправлен не тому адресату. При передаче данных по протоколу UDP, пакеты данных делятся уже на датаграммы. Датаграмма (datagram) — это тоже часть пакета, но ее нельзя путать с сегментом.
Главное отличие датаграмм в автономности. Каждая датаграмма содержит все необходимые заголовки, чтобы дойти до конечного адресата, поэтому они не зависят от сети, могут доставляться разными маршрутами и в разном порядке. Датаграмма и сегмент — это два PDU транспортного уровня модели OSI. При потере датаграмм или сегментов получаются «битые» куски данных, которые не получится корректно обработать.
Первые четыре уровня — специализация сетевых инженеров, но с последними тремя они не так часто сталкиваются, потому что пятым, шестым и седьмым занимаются разработчики.
Пятый уровень, сеансовый (session layer, L5)
Пятый уровень оперирует чистыми данными; помимо пятого, чистые данные используются также на шестом и седьмом уровне. Сеансовый уровень отвечает за поддержку сеанса или сессии связи. Пятый уровень оказывает услугу следующему: управляет взаимодействием между приложениями, открывает возможности синхронизации задач, завершения сеанса, обмена информации.
Службы сеансового уровня зачастую применяются в средах приложений, требующих удаленного вызова процедур, т.е. чтобы запрашивать выполнение действий на удаленных компьютерах или независимых системах на одном устройстве (при наличии нескольких ОС).
Примером работы пятого уровня может служить видеозвонок по сети. Во время видеосвязи необходимо, чтобы два потока данных (аудио и видео) шли синхронно. Когда к разговору двоих человек прибавится третий — получится уже конференция. Задача пятого уровня — сделать так, чтобы собеседники могли понять, кто сейчас говорит.
Шестой уровень, представления данных (presentation layer, L6)
О задачах уровня представления вновь говорит его название. Шестой уровень занимается тем, что представляет данные (которые все еще являются PDU) в понятном человеку и машине виде. Например, когда одно устройство умеет отображать текст только в кодировке ASCII, а другое только в UTF-8, перевод текста из одной кодировки в другую происходит на шестом уровне.
Шестой уровень также занимается представлением картинок (в JPEG, GIF и т.д.), а также видео-аудио (в MPEG, QuickTime). Помимо перечисленного, шестой уровень занимается шифрованием данных, когда при передаче их необходимо защитить.
Седьмой уровень, прикладной (application layer)
Седьмой уровень иногда еще называют уровень приложений, но чтобы не запутаться можно использовать оригинальное название — application layer. Прикладной уровень — это то, с чем взаимодействуют пользователи, своего рода графический интерфейс всей модели OSI, с другими он взаимодействует по минимуму.
Все услуги, получаемые седьмым уровнем от других, используются для доставки данных до пользователя. Протоколам седьмого уровня не требуется обеспечивать маршрутизацию или гарантировать доставку данных, когда об этом уже позаботились предыдущие шесть. Задача седьмого уровня — использовать свои протоколы, чтобы пользователь увидел данные в понятном ему виде.
Протоколы здесь используют UDP (например, DHCP, FTP) или TCP (например, HTTP, HTTPS, SFTP (Simple FTP), DNS). Прикладной уровень является самым верхним по иерархии, но при этом его легче всего объяснить.
Критика модели OSI
Семиуровневая модель была принята в качестве стандарта ISO/IEC 7498, действующего по сей день, однако, модель имеет свои недостатки. Среди основных недостатков говорят о неподходящем времени, плохой технологии, поздней имплементации, неудачной политике.
Первый недостаток — это неподходящее время. На разработку модели было потрачено неоправданно большое количество времени, но разработчики не уделили достаточное внимание существующим в то время стандартам. В связи с этим модель обвиняют в том, что она не отражает действительность. В таких утверждениях есть доля истины, ведь уже на момент появления OSI другие компании были больше готовы работать с получившей широкое распространение моделью TCP/IP.
Вторым недостатком называют плохую технологию. Как основной довод в пользу того, что OSI — это плохая технология, приводят распространенность стека TCP/IP. Протоколы OSI часто дублируют другу друга, функции распределены по уровням неравнозначно, а одни и те же задачи могут быть решены на разных уровнях.
Разделение на семь уровней было скорее политическим, чем техническим. При построении сетей в реальности редко используют уровни 5 и 6, а часто можно обойтись только первыми четырьмя. Даже изначальное описание архитектуры в распечатанном виде имеет толщину в один метр.
Кроме того, в отличие от TCP/IP, OSI никогда не ассоциировалась с UNIX. Добиться широкого распространения OSI не получилось потому, что она проектировалась как закрытая модель, продвигаемая Европейскими телекоммуникационными компаниями и правительством США. Стек протоколов TCP/IP изначально был открыт для всех, что позволило ему набрать популярность среди сторонников открытого программного кода.
Даже несмотря на то, что основные проблемы архитектуры OSI были политическими, репутация была запятнана и модель не получила распространения. Тем не менее, в сетевых технологиях, при работе с коммутацией даже сегодня обычно используют модель OSI.
Вывод, роль модели OSI при построении сетей
В статье мы рассмотрели принципы построения сетевой модели OSI. На каждом из семи уровней модели выполняется своя задача. В действительности архитектура OSI сложнее, чем мы описали. Существуют и другие уровни, например, сервисный, который встречается в интеллектуальных или сотовых сетях, или восьмой — так называют самого пользователя.
Как мы упоминали выше, оригинальное описание всех принципов построения сетей в рамках этой модели, если его распечатать, будет иметь толщину в один метр. Но компании активно используют OSI как эталон. Мы перечислили только основную структуру словами, понятными начинающим.
Модель OSI служит инструментом при диагностике сетей. Если в сети что-то не работает, то гораздо проще определить уровень, на котором произошла неполадка, чем пытаться перестроить всю сеть заново.
Зная архитектуру сети, гораздо проще ее строить и диагностировать. Как нельзя построить дом, не зная его архитектуры, так невозможно построить сеть, не зная модели OSI. При проектировании важно учитывать все. Важно учесть взаимодействие каждого уровня с другими, насколько обеспечивается безопасность, шифрование данных внутри сети, какой прирост пользователей выдержит сеть без обрушения, будет ли возможно перенести сеть на другую машину и т.д. Каждый из перечисленных критериев укладывается в функции одного из семи уровней.