на какой частоте находится звук с

#Звукостудия 1: Частотные диапазоны инструментов или что нужно знать при отстройке звука

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

При решении задач подзвучивания, наличие базовых знаний о характеристиках музыкальных инструментов может оказаться очень полезным. Я бы даже сказал необходимым.

Сразу скажу, что лучше строить на слух и именно на ваш вкус. И если технически вы доверяете настройку профессионалу, то пусть он это делает в вашем присутствии и с вашими коррективами. Так как слышите вы звук по разному и предпочтения у каждого свои.

Все же сталкивались с ситуацией когда вроде и компоненты нормальные и звук плоский или где-то гитара не так звучит и т.п.

Инструменты и другие источники звука характеризуются их частотным спектром, направленностью звука и динамическим диапазоном.

В дебри мастеринга даваться не будем, а рассмотрим только, то что может понадобиться обычному пользователю при отстройке и эквалайзенге системы в том числе и в авто. Это частотные диапазоны наиболее встречающихся инструментов.

Для начала о частотах…
1) Низкие басы (от 10 Гц до 80 Гц) — это самые низкие ноты, от которых резонирует комната, а провода начинают гудеть. Если ваша звуковоспроизводящая аппаратура не воспроизводит эти частоты, вы должны ощутить потерю насыщенности и глубины звука. Естественно, при записи и сведении потеря этих частот вызовет тот же эффект.

2) Верхние басы (от 80 Гц до 200 Гц) — это верхние ноты басовых инструментов и самые низкие ноты таких инструментов, как гитара. Если потерять этот регистр, то вместе с ним потеряется и ощущение силы звука. А ведь именно в этих частотах содержится энергия звука, которая заставляет вас пританцовывать под музыку, недаром основная энергия ритм-секции сконцентрирована именно в этом регистре.

3) Низкие средние (от 200 Гц до 500 Гц) — здесь размещается почти весь ритм и аккомпанимент, это регистр гитары.

4) Средние средние ( от 500 Гц до 2.500 Гц) — соло скрипок, соло гитар, фортепиано, вокал. Музыку, в которой не хватает этих частот обычно называют «занудной» или «смурной».

5) Вехние средние (от 2.500 Гц до 5 кГц). Хотя в этом диапазоне мало нот, только самые верхние ноты фортепиано и некоторых других инструментов, здесь много гармоник и обертонов. Усиление этой части спектра позволяет достичь яркого, искрящегося звука, создающего эффект присутствия. Однако, если энергия этой полосы частот чрезмерна, то это режет слух. Это и называется «слушательской утомляемостью» и является проблемой большинства недорогих аккустических систем, которые искуственно усиливают данную часть спектра для «яркости» звучания. Ну это уже коммерческие штучки!

6) Низкие высокие (около 5 кГц до 10 кГц), где мы встречаемся с самым сильным искажением высоких частот и где шипение пленки (для любителей кассетной записи) становится самым заметным, так как здесь очень мало других звуков, способных скрыть это. Хотя люди, теоретически могут слышать и более высокие тона, эти частоты считаются пределом восприятия. Но по большому счету, для хорошего звука — это маловато.

7) Верхние высокие (около 10 кГц до 20 кГц) наша последняя октава, это самые тонкие и нежные высокие частоты. Если этот диапазон частот будет неполноценен, то вы ощутите некий дискомфорт при прослушивании записей (если, конечно, медведь не наступил вам на ухо).

Итак… Диапазоны инструментов:
● Гитара 70-1000 Гц (обертона 1000-8000 Гц);
● Бас 40-250 Гц (обертона 250-1000 Гц);
● Бас гитара 40-800 Гц;
● Бас бочка или Большой барабан 40-250 Гц и щелчок во время удара — от 1000 Гц и выше (у злых афро нижний диапазон может быть глубже);
● Тарелки 300-15000 Гц;
● Литавры 300-200 Гц (обертона 200-4000 Гц);
● Скрипка 180-3500 Гц (обертона 3500-18000 Гц);
● Флейта 250-2030 Гц (обертона 2030-15000 Гц);
● Клавишные, струнные и перкуссия — важная область 400-1000 Гц;
● Вокал. Диапазон 80-10000 Гц.

Кроме непосредственно частотного диапазона в звуке того или иного инструмента присутствуют обертона, которые распределены в пределах более высоких частот и без которых звучание получается глухим и невыразительным.

Важно знать, что слух человека наилучшим образом воспринимает звук частотой 2000-3000 Гц. От наличия обертонов в пределах этих частот в голосе создаёт его полётность и звонкость.

Касаемо вокала:
— Бас 82-349 Гц;
— Баритон 110-392 Гц (Чтобы подчеркнуть баритон, нужно повысить уровень в диапазоне 2500-3000 Гц);
— Тенор 132-523 Гц (Чтобы подчеркнуть тенор, нужно повысить уровень в диапазоне 300-600 Гц);
— Контральто 165-692 Гц;
— Меццо-сопрано 220-880 Гц;
— Сопрано 262-1046 Гц;
— Колоратурное сопрано 1397 Гц.

Уровень каких частот корректировать для получения прозрачности звука?
● 5000 Гц — регулирование приближения/удаления;
● 8000 — 20000 Гц — воспринимаемое качество звучания, глубина, пространство;
● 31 — 50 Гц — создают ощущение силы и мощности;
● 80 — 125 Гц — слишком много этих частот приводит к появлению нежелательного гудения;
● 160 — 250 Гц — часть басового спектра. Недостаточный уровень частот этого диапазона — отсутствие теплоты и мягкости, избыток — скучный звук.

При сравнении частотного диапазона музыкальных инструментов и человеческого голоса, последний имеет самый широкий диапазон частот (если не считать фортепиано и рояль).
При отстройке так же необходимо учитывать силу звучания (динамический диапазон) данных инструментов.

Динамический диапазон гитары составляет 15 дБ; органа — 35 дБ; рояля — 45 дБ; женский голос 20-35 дБ; мужской голос 20-45 дБ, эстрадного оркестра 45-55 дБ, симфонический оркестр 60-75 дБ.

А человеческий голос имеет диапазон звучания от 75 до 1100 Герц, который так или иначе перекрывает (заглушает, смешивается) с любым музыкальным инструментом (оптимальная точка — 300 Герц). Поэтому при отстройке и эквализации под инструменты, вокал будет реагировать на это очень сильно.

Источник

Воспроизведение звука и музыки: какие частоты используют и зачем их ограничивают

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Содержание

Содержание

Собаки слышат до 45 кГц, кошки — до 79 кГц, дельфины и летучие мыши — выше 100 кГц, а человеческое ухо едва в состоянии услышать несчастные 20 Кгц, а чаще — всего 16-17 кГц. Почему все так? И зачем тогда гордые значения воспроизводимых частот типа «16 Гц — 40 кГц» на аудиотехнике? На каких частотах вообще звучат музыкальные инструменты и человеческий голос? Об этом ниже.

Что такое частота звука?

Звуковая волна, как и любая другая, имеет две главные характеристики — амплитуда и частота. Если к поплавку на озере привязать карандаш и устроить так, чтобы он чертил на движущейся бумаге свою траекторию (как кардиометр или сейсмограф), то получится синусоида:

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Почему мы слышим хуже кошки?

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Звуковые волны могут иметь любую частоту колебаний, но человеческое ухо улавливает их в диапазоне примерно от 20 Гц до 20 Кгц. На самом деле, в идеальных лабораторных условиях некоторые слышат аж до 12–16 Гц, а те, кто не слышит, могут уловить низкочастотные колебания телом. А вот с высокими частотами все хуже. Лишь немногие смогут уловить 20 кГц, большинство же слышат лишь до 16-17 кГц, и с возрастом это значение падает до 8–10 кГц.

Более того, человеческое ухо наиболее чувствительно к диапазону от 2 до 5 кГц — это так называемая зона разборчивости. Чувствительность к волнам на разных участках спектра различается. Любой может записаться на аудиометрию — обследование слуха, чтобы получить аудиограмму — кривую чувствительности своих ушей по частотам. Правда, в медицине она измеряется в диапазоне от 125 Гц до 8 кГц, но даже в таком укороченном отрезке у всех будет видна неравномерность слуха. Чувствительность ушей зависит даже от времени дня и настроения.

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Кроме того, воспринимаемая громкость зависит от частоты звука. К примеру, на малой громкости низкие и высокие частоты слышны хуже. Это как раз следствие того, что человеческое ухо заточено под средние частоты, позволяющие распознавать речь. Эффективная коммуникация — одно из главных эволюционных преимуществ человека, поэтому эволюция и наделила нас тем слуховым диапазоном, что мы имеем.

В свою очередь, эволюционные преимущества других животных могут отличаться. К примеру, летучие мыши ориентируются в пространстве, издавая и улавливая ультразвук, поэтому и слышат до 200 кГц. А большая восковая моль часто становится добычей летучих мышей, поэтому ей пришлось развить слуховой диапазон до 300 кГц, чтобы избегать встреч с ужасом, летящим на крыльях ночи. Кошка слышит ультразвук, потому что многие грызуны общаются на высоких частотах, а киты слышат инфразвук, чтобы общаться самим, потому что низкочастотные волны лучше передаются на большие расстояния.

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Фундаментальная частота голоса мужчины — в районе 80-150 Гц, женщины — 150-250 Гц. Однако телефонные линии обрезают в звуке все, что ниже 300 Гц и выше 3,5 кГц. Почему? Потому что кроме фундаментальной частоты есть еще обертона. Это призвуки, которые появляются из-за того, что у человека звучат не только голосовые связки, но и гортань, голова, да и все тело целиком. Обычно они находятся выше основного тона, поэтому так и называются.

У мужчин обертона голоса достигают 4 кГц, у женщин — 5-6 кГц. Они сильно влияют на звучание, благодаря им мы можем отличить одного человека от другого и даже определить по голосу его телосложение. Соответственно, именно они, а не фундаментальный тембр, важны для телефонных переговоров.

Частоты музыки

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Бас гитара, как и контрабас, обычно настраиваются в ми контроктавы — это 41 Гц, гитара — на октаву выше, 82 Гц. Скрипка, один из самых писклявых инструментов в оркестре, начинается с соль малой октавы (196 Гц) и заканчивается на ля четвертой октавы (440 Гц). Диапазон большинства фортепиано — от ля субконтроктавы (27,5 Гц) до до 5 октавы (523 Гц).

Как можно заметить, диапазон большинства музыкальных инструментов находится довольно низко по спектру, не выше 4-5 кГц. Зачем тогда вообще что-то выше условных 5 кГц в аудиотехнике?

К слову, первые граммофоны умели воспроизводить от 170 до 2 000 Гц, а с появлением электронной записи их диапазон расширился на 2,5 октавы — от 100 до 5 000 Гц. То есть как раз, чтобы воспроизводить диапазон голоса и большинства инструментов в оркестре. А другой музыки в 20-х годах прошлого века и не было.

Однако, как и в случае с человеческим голосом, решающую роль играют обертона. Они также зависят от «телосложения» инструмента — его габаритов, плотности дерева или металла, массы и т. п. Ведь когда нажимаешь клавишу ля на фортепиано — звучит не чистый синус, а весь инструмент целиком, включая и ноты ля в других октавах — они начинают колебаться в унисон. На этом эффекте основано звучание ситара — у него есть дюжина резонирующих струн, производящих характерный звон.

Более того, даже части самой струны, кратные ее длине, начинают колебаться в унисон. К примеру, половина, треть, четверть, пятая части струны будут издавать обертона на октаву или несколько октав выше фундаментальной частоты.

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Обертона, которые кратны основному тону, называют гармоническими, или, попросту, гармониками. Именно они придают инструменту свой уникальный характер звучания, именно в них вся красота, именно количеством обертонов хороший инструмент отличается от плохого. Благодаря обертонам и гармоникам музыка предстает перед нами во всей полноте. Для них и нужен этот, на первый взгляд, пустой участок от 5 до 20 кГц.

Частотный диапазон у аудиотехники

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Производители аудиотехники всегда стремились расширить диапазон воспроизводимых частот, чтобы добиться красоты и величественности звучания настоящих инструментов. Во времена ламповой техники верхняя граница едва достигала 12 кГц. Магнитная запись повысила порог до 15 кГц, но даже этот показатель могла выдать только студийная магнитная пленка с высокой скоростью протягивания ленты. У бытового катушечного магнитофона верхняя граница воспроизводимых им частот падает до 10–12 кГц, а в кассетных магнитофонах — и того меньше.

Все изменилось с появлением цифровой записи и CD, позволивших кодировать весь диапазон от 20 Гц до 20 кГц. Но вновь откатилось с появлением интернета и mp3, срезающих значительную часть верхов во имя меньшего объема файлов.

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

При этом сделать колонки, воспроизводящие весь диапазон, оказалось проще. Одни из первых студийных мониторов на рынке, Altec 604, в некоторых модификациях уже могли воспроизводить от 20 Гц до 22 кГц, а это 70-е годы прошлого века. Большинство современных колонок без проблем воспроизводят до 20 кГц, а нижняя планка зависит от диаметра вуфера, конструкции фазоинвертора и наличия саба.

Также нередко встречаются колонки с диапазоном до 30–40 кГц. Но нужно всегда смотреть на АЧХ, чтобы понять, на какой громкости они могут эти частоты воспроизводить, и будет ли их вообще слышно.

Тем не менее, многие обладатели колонок и наушников с расширенным частотным диапазоном (от 5/10/15 Гц до 30/40/50 кГц) утверждают, что они звучат ярче и/или глубже. Правда, чтобы это услышать, нужно воспроизводить музыку, в которой есть соответствующая информация. К примеру, ютуб режет все, что выше 16 кГц, mp3 даже в 320 bpm режет до 19 кГц, а стандарт CD (16 bit 44.1 кГц) срезает все, что выше 22 кГц. Расширенным диапазоном могут похвастаться стандарты типа DVD-Audio, Super Audio CD, DSD и некоторые другие, но музыки в таких форматах не так уж и много.

Если же наушники еще и беспроводные, то диапазон частот дополнительно ограничен кодеками Bluetooth. Даже Aptx-HD имеет потолок в 19 кГц, и только LDAC от Sony умеет транслировать музыку в высоком разрешении, но многие жалуются на слабое качество сигнала в таком режиме.

Жанры музыки и частоты

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Стоит сказать, что не всегда гармоники и обертона делают музыку лучше. Слышимый диапазон можно представить себе, как тесный лифт, инструменты — как его посетителей, а обертона и гармоники — как их вес и габариты. В этом случае оркестр будет похож на группу детей — большинство инструментов не обладают большим диапазоном и занимают строго свое место, поэтому их может поместиться много.

Но в той же рок-музыке звучание инструментов многократно усиливается, обертонов становится слишком много, это больше похоже на сумоистов в пуховиках. Чтобы уместить их в лифт, нужно убрать лишнее — снять пуховики. Этим занимается звукорежиссер — он ограничивает частотный диапазон каждого инструмента фильтрами хай-пасс и лоу-пасс, а с помощью эквалайзера убирает ненужные и выделяет нужные гармоники.

К примеру, электрогитары, вокал и рабочий барабан обычно ограничивают от 100–150 Гц до 8–12 кГц, бас и бочку — от 20–40 Гц до 6–10 кГц и т. п. Да, звучание каждого инструмента становится менее богатым, но за счет этого в общем миксе они не мешают, а дополняют друг друга.

Появление синтезаторов дало возможность сделать чистый синус без обертонов, и уже потом обогатить его нужным количеством гармоник. Это позволило создать очень густой и четкий бас глубиной до 20 Гц, что невозможно проделать с живыми инструментами.

Заключение

Теперь понятно, почему музыка в высоком разрешении — это по большей части всякий джаз, кантри и классика, где сведение выполняется по минимуму, либо вообще отсутствует. Вполне возможно, что такая музыка в ультравысоком разрешении будет звучать максимально живо и естественно в наушниках, играющих от 4 Гц до 51 кГц.

В некоторых жанрах электронной музыки также встречается бас в районе инфразвука. Однако чаще всего электроника, рок и метал не содержат информации за пределами слышимого диапазона. Там все лишние обертона заботливо вырезал господин звукорежиссер, а те, что как-то выжили, добил мастеринг-инженер. Зато осталась самая сочная часть, которую будут отлично воспроизводить любые колонки и наушники.

Источник

Аудио-задротам))) какой звук на какой частоте

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Классически звуковой спектр делится на три части: низкие, средние и высокие частоты. Границы частот, хотя и не все с этим согласны, можно обозначить следующим образом: низкие от 10 Гц до 200 Гц, средние от 200 Гц до 5 кГц, а от 5 кГц — высокие. Для более точного определения, давайте разделим эти три части на более мелкие и рассмотрим их по отдельности.

1) Низкие басы (от 10 Гц до 80 Гц) — это самые низкие ноты, от которых резонирует комната, а провода начинают гудеть. Если ваша звуковоспроизводящая аппаратура не воспроизводит эти частоты, вы должны ощутить потерю насыщенности и глубины звука. Естественно, при записи и сведении потеря этих частот вызовет тот же эффект.

2) Верхние басы (от 80 Гц до 200 Гц) — это верхние ноты басовых инструментов и самые низкие ноты таких инструментов, как гитара. Если потерять этот регистр, то вместе с ним потеряется и ощущение силы звука. А ведь именно в этих частотах содержится энергия звука, которая заставляет вас пританцовывать под музыку, недаром основная энергия ритм-секции сконцентрирована именно в этом регистре.

3) Низкие средние (от 200 Гц до 500 Гц) — здесь размещается почти весь ритм и аккомпанимент, это регистр гитары.

4) Средние средние ( от 500 Гц до 2.500 Гц) — соло скрипок, соло гитар, фортепиано, вокал. Музыку, в которой не хватает этих частот обычно называют «занудной» или «смурной».

5) Вехние средние (от 2.500 Гц до 5 кГц). Хотя в этом диапазоне мало нот, только самые верхние ноты фортепиано и некоторых других инструментов, здесь много гармоник и обертонов. Усиление этой части спектра позволяет достичь яркого, искрящегося звука, создающего эффект присутствия. Однако, если энергия этой полосы частот чрезмерна, то это режет слух. Это и называется «слушательской утомляемостью» и является проблемой большинства недорогих акустических систем, которые искуственно усиливают данную часть спектра для «яркости» звучания. Ну это уже коммерческие штучки!

6) Низкие высокие (около 5 кГц до 10 кГц), где мы встречаемся с самым сильным искажением высоких частот и где шипение пленки (для любителей кассетной записи) становится самым заметным, так как здесь очень мало других звуков, способных скрыть это. Хотя люди, теоретически могут слышать и более высокие тона, эти частоты считаются пределом восприятия. Но по большому счету, для хорошего звука — это маловато.

7) Верхние высокие (около 10 кГц до 20 кГц) наша последняя октава, это самые тонкие и нежные высокие частоты. Если этот диапазон частот будет неполноценен, то вы ощутите некий дискомфорт при прослушивании записей (если, конечно, медведь не наступил вам на ухо).

Электрическая сеть шумит на частоте 50 Гц. Для устранения этого надо убрать частоты 50 и 100 Гц при помощи параметрического эквалайзера, ширина полосы которого достаточно узка. Это устранит шумы сети, но не повлияет заметно на общий звук. Графический эквалайзер (треть октавы) тоже эффективен в этой ситуации, но остальными типами эквалайзеров для этого лучше не пользоваться, так как они имеют слишком широкую зону влияния и регулировка может существенно изменить звучание бас-гитары, в том числе не в лучшуюсторону. Нижние частоты бас-гитары и басового барабана лежат в области 40 Гц и ниже. Чтобы придать их звучанию мощь (атаку), регулируйте частоту 80 Гц. Нижняя частота электрогитары — 80 Гц. Для устранения «бочковатости» надо вырезать частоту 200 Гц; для устранения резкого, неприятного призвука — ослабить в районе 1Кгц. Чтобы добавить «ду», сделать «жалящим» звучание рок-гитары, просмотрите область от 1,5 кГц до 4 кГц,

найдите нужную частоту и убирайте ее до тех пор, пока атака станет такой, как вы желаете. Основная проблема с акустическими гитарами, как правило, состоит в том, что они звучат «бочковато» — из-за неподходящих микрофонов, неудачного расположения микрофона, акустических характеристик помещения или просто из-за того, что инструмент плохой. Область «вредной» частоты находится обычно между 200 Гц и 500 Гц — ее и надо вырезать. Вокал также занимает большую зону частотного диапазона, при этом область 2-4 кГц регулируется для улучшения артикуляции.

Частотный диапазон музыкальных инструментов
Рояль, фортепиано 27-4200 Гц
Контрабас 40-300 Гц
Электрическая бас-гитара 41-250 Гц
Туба 45-320 Гц
Валторны 60-740 Гц
Фагот 60-630 Гц
Виолончель 65-880 Гц
Тромбон 80-500 Гц
Акустическая гитара 82-1175 Гц
Электрическая гитара 82-1570 Гц
Альт 130-1240 Гц
Кларнет 140-1980 Гц
Труба 160-990 Гц
Скрипки 210-2800 Гц
Гобой 230-1480 Гц
Флейта 240-2300 Гц
Пикколо-флейта 560-2500 Гц

Частотный диапазон человеческого голоса:
Бас 75-330 Гц
Тенор 120-500 Гц
Меццо-сопрано 170-700 Гц
Сопрано 230-1100 Гц

1. При сравнении частотного диапазона музыкальных инструментов и человеческого голоса, последний имеет самый широкий диапазон частот (если не считать фортепиано и рояль).
2. Так же необходимо учитывать силу звучания (динамический диапазон) данных инструментов.

Например:
Динамический диапазон гитары составляет 15 дБ; органа — 35 дБ; рояля — 45 дБ; женский голос 20-35 дБ; мужской голос 20-45 дБ, эстрадного оркестра 45-55 дБ, симфонический оркестр 60-75 дБ.

Вывод:
Человеческий голос имеет диапазон звучания от 75 до 1100 Герц, который так или иначе перекрывает (заглушает, смешивается) с любым музыкальным инструментом (оптимальная точка — 300 Герц).

Источник

Акустические системы: поговорим о звуке (часть 1)

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Этой статьей мы начнем цикл материалов о конструкции акустических систем, их свойствах и важных характеристиках, в которых стоит разобраться тому, кто решил, как минимум, обдуманно купить себе колонки или же хочет подробнее изучить, почему все работает именно так, а не иначе. Цикл рассчитан на новичков в мире аудио, но будет полезен и тем, кто уже все знает, чтобы освежить свои знания или написать свое мнение в комментариях. Итак, начнем мы, однако, не с акустики, а со звука, потому что единственная задача акустики — создать звук.

Что такое звук?

В учебнике сказано: «Колебательные движения частиц, которое распространяется в виде волн в газообразной, жидкой или твердой средах». Давайте отбросим лишнее и поговорим только о слышимом звуке (кроме него ведь еще существуют ультразвук, инфразвук и т.д.).

Звук — это, на самом деле, не движение воздуха (газа) в пространстве, а волновые, периодические изменения давления этого самого газа. Звук является волновым излучением, подчиняется соответствующим физическим законам, которые описывают его распространение и взаимодействия. Согласно этим законам мы можем описать звук по нескольким характеристикам. Возьмем основные: частота, амплитуда (форма колебаний) и скорость.

Что такое частота звука?

Частота — это количество колебаний за единицу времени. Конкретней — число колебаний в секунду. Измеряется в герцах. Одно колебание в секунду — один герц (Гц). Если еще вспомнить, что звук распространяется в воздухе со скоростью около 350 метров в секунду или около 1250 км/ч, то достаточно легко понять, что частота и скорость связаны между собой. И эта связь дает нам возможность определить длину звуковой волны: чем больше частота, тем меньше длина волны — и наоборот.

Почти традиционно считается, что человеческий слух позволяет услышать диапазон частот «20–20» — от 20 Гц до 20 кГц, другими словами, от 20 колебаний в секунду до 20 000.

Не все частоты одинаково громкие

При этом матушка-природа наделила нас с вами достаточно избирательным слухом. Психоакустические исследования показывают, что лучше всего человек слышит самое для себя важное — человеческую речь. Эти звуки располагаются в диапазоне частот в районе 3000 Гц. Где-то в этом районе и находится максимальная чувствительность наших с вами ушей.

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

На других частотах она уменьшается, изменяясь в виде плавных кривых. Эти кривые показывают, с какой громкостью человек воспринимает звуковые колебания равной амплитуды. Эти данные важны не только для расчета акустических систем, но и для правильного понимания природы восприятия звука.

Они были получены статистическим способом, когда в субъективном оценивании громкости звучания на разных частотах принимало участие большое количество людей. В честь авторов этой научной разработки линии равной громкости называются кривыми Флетчера-Мэнсона.

Как мы понимаем, откуда пришел звук

Ответ простой: потому, что у нас есть голова и два уха! Если одно ухо вдруг не работает, это можно частично компенсировать быстрым поворотом головы. Слух при наличии двух ушей называется бинауральным. Он позволяет нам локализовать источник звука.

Это происходит потому, что звук приходит к правому и левому уху с небольшой задержкой или, если выразиться точнее, со сдвигом по фазе. Так как длина звуковой волны достаточно большая, в оба уха обычно поступает одна волна, но разные ее участки — фазы.

Этот сдвиг анализируется нашим мозгом, легкий поворот головы — и мы уже готовы приблизительно указать на какой ветке сидит птица, хотя разглядеть ее все равно не получится.

И чем выше звук, то есть, чем больше его частота, тем легче определить направление на его источник — сильнее проявляется фазовый сдвиг. А вот на низких частотах длина волны становится больше, чем расстояние между ушами, поэтому определить источник звука гораздо сложнее.

Почему одни звуки красивые, а другие нет?

Здесь почему-то тянет взять серый том Фейнмановских лекций и освежить воспоминания о рядах Фурье — но будем проще: любое колебание можно разложить на несколько колебаний с меньшей длиной волн. Эти меньшие волны — и есть гармоники, и сколько их укладывается в длине основной волны — две, три и т.д. — определяет их четность или нечетность. Как оказалось, нечетные гармоники воспринимаются нашим слухом дискомфортно. Причем вроде все играет правильно, но дискомфорт остается.

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Более явный неприятный звук — диссонанс, две частоты, работающие одновременно и вызывающие редкие биения. Если хотите еще наглядней, то нажмите близлежащие черную и белую клавиши на пианино.

Есть и противоположность диссонанса — консонанс. Это сама благозвучность, например, — такой интервал, как октава (удвоение частоты), квинта или кварта. Кроме того, комфортности звучания мешают маскирующие его шумы различной природы, искажения и призвуки.

Ясно, что шум — то, что мешает в принципе. Звуковой мусор. Впрочем, есть и белый шум, этакий эталон шума, в котором присутствуют равномерно все частоты (точнее — спектральные составляющие). Если вы хотите уйти от источника белого шума, то по ходу удаления он будет розоветь. Это происходит потому, что воздух сильнее ослабляет верхние частоты слышимого спектра. Когда их меньше, тогда говорят о розовом шуме.

Чем громче шум по отношению к полезному звуку, тем больше этот звук маскируется шумом. Падает комфортность, а затем — и разборчивость звучания. Это же относится и к нечетным гармоникам, и к нелинейным искажениям, о которых мы еще поговорим более подробно. Все эти явления взаимосвязаны и, самое главное, — все они мешают нам слушать.

Нота — высота звука и его частота — зависит от специальности

В понимании звука, судя по всему, есть две крайности — понимание звукоинженера и музыканта. Первый говорит «440 Гц!» второй — «нота Ля!». И оба правы. Первый говорит «частота», второй — «высота звука». Впрочем, известно немало отличных музыкантов, которые вовсе не знали нот. При этом специалистов в области акустики, не знающих физических основ в этой области, еще никому не удавалось встретить.

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Важно понимать, что оба этих специалиста по-своему занимаются комфортным звучанием. Автор музыкального произведения, инстинктивно, или опираясь на консерваторские знания, строит звук на принципах гармонии, не допуская диссонансов или искажений. Конструктор, создающий колонки, изначально не допускает посторонних призвуков, минимизирует искажения, заботится о равномерности амплитудно-частотной характеристики, динамике и многом, многом другом.

Громкость, звуковое давление — пределы и ориентиры

С громкостью все не так просто. Она относительна. Подумайте сами, ведь абсолютной тишины не существует. То есть, она в природе есть, но попадание в такое место превращается в пытку — вы начинаете слышать стук своего сердца, звон в ушах — все равно тишина исчезает.

Поэтому звуковое давление измеряется относительно некоего нулевого уровня в децибелах (дБ). Это логарифмические единицы, ведь логарифмическая шкала наиболее точно соответствует природе слуха. Если немного углубиться в теорию, нужно вспомнить эмпирически установленный закон психофизиологии Вебера-Фехнера, который описывает работу органов чувств. Согласно этому закону, интенсивность ощущения чего-либо прямо пропорциональна логарифму интенсивности раздражителя. В случае звука, это — амплитуда (размах) колебаний.

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Разница приблизительно в шесть децибел воспринимается нами, как удвоение громкости. Добавление трех децибел на низкой частоте требует удвоения амплитуды колебаний источника звука, но на слух это замечает не каждый слушатель! Такие вот парадоксальные, на первый взгляд, данные.

Поведение звука

Оно всегда предсказуемо, если вооружиться определенными знаниями. Звук может отражаться от поверхности, поглощаться ею, проникать сквозь нее. При этом каждый вариант — лишь частичный. Отражение звука приводит к эффекту эхо, звукоинженеры еще называют его реверберацией. Это сложный процесс. В любой комнате есть своя реверберация, многократная, по-своему затухающая, с определенными частотными характеристиками. Затухающая потому, что часть звука все-таки поглощается стенами.

на какой частоте находится звук с. Смотреть фото на какой частоте находится звук с. Смотреть картинку на какой частоте находится звук с. Картинка про на какой частоте находится звук с. Фото на какой частоте находится звук с

Но если звук сделать громче, то, в зависимости от выбранного звукового давления, через некоторое время (оно линейно зависит от громкости в дБ) в стену начнут стучать соседи. Это значит, мы выяснили, что часть звука проходит сквозь стену. Правильное соотношение всех этих свойств — очень важный параметр для комфортного звучания.

Та же реверберация должна быть оптимальной. Если ее практически нет, говорят, что комната переглушена. Если ее слишком много — вы слышали такое на вокзале, — страдает разборчивость звука. Существуют определенные критерии для правильной акустической обстановки, о них мы писали, например, в этой статье.

Еще один источник аудионегатива — резонирующие объекты. Скажем, хрусталь в стеклянном шкафу. И когда все эти факторы приведены в норму — поздравляю, мы с вами находимся в акустически комфортном помещении!

В таком помещении особенно хорошо звучит качественное аудиовоспроизводящее оборудование и его главная составляющая часть — акустические системы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *