на какой частоте работает rfid

Какие бывают RFID протоколы и как их похекать с помощью Flipper Zero

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

Flipper Zero — проект карманного мультитула для хакеров в формфакторе тамагочи, который мы разрабатываем. Предыдущие посты [1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18],[19]

RFID – это технология для бесконтактных радио-меток, используемых повсюду: в домофонах, платежных картах, проездных, пропусках в офисы, для учета домашних животных, автомобилей и т.д. Есть два основных типа RFID меток, которые мы используем в обычной жизни: низкочастотные и высокочастотные.

Как устроены RFID-метки

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid
RFID чип включается, когда на него подается питание от радиополя считывателя

RFID-метка обычно не имеет собственного питания. Пока она не находится в поле действия считывателя, чип внутри метки полностью выключен. Как только метка попадает в зону действия считывателя, ее антенна поглощает энергию излучения считывателя, и на чип подается питание. В этот момент чип включается и начинает общение со считывателем. При этом, антенна RFID-метки настроена только на определенную частоту, поэтому метка сможет активироваться только в поле действия подходящего считывателя.

Какие бывают RFID-метки

Внешний вид RFID-меток может быть совершенно разный: толстые/тонкие карты, брелоки для домофонов, браслеты, кольца, монеты и даже наклейки. При этом только по внешнему виду нельзя однозначно сказать, на какой частоте и по какому протоколу работает метка.

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid
Внешне RFID-метки могут выглядеть по-разному

Часто производители RFID-брелков используют одинаковые пластиковые корпуса для меток разных частотных диапазонов, поэтому бывает, что две метки, выглядящие абсолютно одинаково, работают в разных диапазонах. Это важно учитывать, когда пытаетесь определить на глаз, что за метка перед вами. В статье мы будем рассматривать 2 самых популярных типа RFID-меток, которые используются в системах контроля доступа. Флиппер поддерживает оба этих диапазона.

Существует множество RFID-протоколов, работающих на других частотах, вроде UHF 840-960 МГц. Они применяются для отслеживания грузов, оплаты проезда на платных дорогах, отслеживания диких животных при миграции и т.д. Эти метки могут иметь собственную батарею и работать на расстояниях от нескольких метров, до нескольких километров. При этом, они достаточно редкие, и в привычном обиходе почти не встречаются. В статье мы их рассматривать не будем.

Отличия RFID 125 кГц и 13.56 МГц

Проще всего понять в каком диапазоне работает RFID-метка по виду антенны. У низкочастотных меток (125 кГц) антенна сделана из очень тонкой проволоки, буквально тоньше волоса, и огромного числа витков. Поэтому такая антенна выглядит как цельный кусок металла. У высокочастотных карт (13.56 МГц) антенна имеет намного меньше витков и более толстую проволоку или дорожки. Так что между витками видны зазоры.

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfidЕсли просветить карту фонариком, можно узнать на какой частоте она работает

Чтобы увидеть антенну внутри RFID-карты, можно просветить ее фонариком. Если у антенны всего несколько крупных витков — это скорее всего высокочастотная карта. Если антенна выглядит как цельный кусок металла без просветов — это низкочастотная карта.

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfidАнтенны у низкочастотных карт из очень тонкой проволоки, а у высокочастотных из более толстой

Низкочастотные метки обычно используются в системах, которые не требуют особенной безопасности: домофонные ключи, абонементы в спортзал и т.д. Из-за большей дальности действия их удобно применять в качестве пропусков на автомобильные парковки: водителю не нужно близко прислонять карту к считывателю, она срабатывает издалека. При этом, низкочастотные метки очень примитивны, у них низкая скорость передачи данных, из-за этого в них нельзя реализовать сложный двусторонний обмен данными, вроде проверки баланса и криптографии. Низкочастотные метки передают только свой короткий ID без всяких средств аутентификации.

Высокочастотные метки используются для более сложного взаимодействия между картой и считывателем, когда нужна криптография, долгий двусторонний обмен, аутентификация и т.д., например для банковских карт, надежных пропусков.

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfidСравнение RFID-меток 125 кГц и 13,56 МГц

Низкочастотные метки 125 кГц

Высокочастотные метки 13,56 МГц

Как устроен RFID во Flipper Zero

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfidРабота RFID-антенны во Flipper Zero

Флиппер поддерживает низкочастотные и высокочастотные метки. Для поддержки обеих частот, мы разработали двухдиапазонную RFID антенну, расположенную на нижней крышке устройства.

Для высокочастотных протоколов (NFC) во Флиппере установлен отдельный NFC-контроллер ST25R3916. Он реализует всю физическую часть работы с картами: чтение, эмуляцию. Низкочастотные протоколы 125 kHz у нас реализованы полностью программно — Флиппер «дрыгает» ногой микроконтроллера для передачи и принимает низкочастотный сигнал через аналоговую схему прямо на ногу GPIO.

[Видео] Расположение платы с антеннами RFID во Flipper Zero

Сверху плата с антеннами экранирована слоем ферромагнетика — он изолирует остальную электронику от наводок, перенаправляя высокочастотное поле в другую сторону, что дополнительно увеличивает дальность работы.

Антенна на этапе сборки вклеивается в нижнюю крышку Флиппера и подключается к плате через подпружиненные контакты. Это сильно облегчает процесс сборки, так как не требует подключения шлейфов или UFL разъемов к антенной плате.

Низкочастотные протоколы 125 кГц

В низкочастотных метках хранятся короткие ID карты, длиной в несколько байт. Эти ID прописываются в базу данных контроллера или домофона. При этом карта просто передает свой ID любому желающему, как только на нее подано электричество. Часто ID карты написан на ней самой и его можно сфотографировать и ввести вручную во Флиппер.

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

В реальной жизни низкочастотных протоколов намного больше, но все они так или иначе являются вариацией этих трех, по крайней мере используют ту же модуляцию на физическом уровне. На момент написания этой статьи Флиппер умеет читать, сохранять, эмулировать и записывать все три этих протокола. Наверняка найдутся низкочастотные протоколы, которые пока не поддерживаются Флиппером, но так как подсистема 125 kHz реализована программно, мы сможем добавить новые протоколы в будущем.

EM-Marin

[Видео] Считывание Флиппером меток EM-Marin

В СНГ наиболее распространен RFID-формат EM-Marin. Он прост и не защищен от копирования. EM-Marin обычно выполнен на базе чипа EM4100. Существуют и другие чипы, работающие по тому же принципу, например EM4305 – в отличие от EM4100 его можно перезаписывать.

Для считывания низкочастотной карты нужно зайти в меню Флиппера 125 kHz RFID —> Read и приложить метку к задней крышке. Флиппер определит протокол метки самостоятельно и отобразит его название вместе с ID карты. Так как за один проход, Флиппер пытается по очереди пробовать все типы протоколов, это занимает время. Например, для считывания карт Indala требуется несколько секунд.

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfidУникальный код EM-Marin на карте и на Флиппере

Уникальный код EM4100 состоит из 5 байт. Иногда он написан на RFID-карте. Уникальный код может быть записан сразу в нескольких форматах: десятичном и текстовом. Флиппер использует шестнадцатеричный формат при отображении уникального кода. Но на картах EM-Marin обычно написаны не все 5 байт, а только младшие 3 байта. Остальные 2 байта придется перебирать, если нет возможности считать карту.

[Видео] Открываем домофон, эмулируя RFID 125 кГц

Некоторые домофоны пытаются защищаться от дубликатов ключей и пытаются проверять, не является ли ключ записанным на болванку. Для этого домофон перед чтением посылает команду записи, и, если запись удалась, считает такой ключ поддельным. При эмуляции ключей Флиппером домофон не сможет отличить его от оригинального ключа, поэтому таких проблем не возникнет.

HID Prox

[Видео] Считывание Флиппером меток HID26

Компания HID Global — самый крупный производитель RFID оборудования в мире. У них есть несколько фирменных низкочастотных и высокочастотных RFID-протоколов. Наиболее популярный низкочастотный HID-протокол это 26-битный H10301 (HID26, он же HID PROX II). Уникальный код в нем состоит из 3 байт (24 бита), еще 2 бита используются для контроля четности (проверки целостности).

На некоторых HID26 картах написаны цифры – они обозначают номер партии и ID карты. Полностью узнать 3 байта уникального кода по этим цифрам нельзя, на карте написаны лишь 2 байта в десятичной форме: Card ID.

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfidСтруктура данных HID26 на карте и при чтении Флиппером

Из низкочастотных протоколов семейства HID, Флиппер пока умеет работать только с HID26. В дальнейшем мы планируем расширить этот список. HID26 наиболее популярен, так как совместим с большинством СКУДов.

[Видео] Флиппер эмулирует низкочастотную карту и открывает турникет

Indala

RFID-протокол Indala был разработан компанией Motorola, и потом куплен HID. Это очень старый протокол, и современные производители СКУД его не используют. Но в реальной жизни Indala все еще изредка встречается. На момент написания статьи, Флиппер умеет работать с протоколом Indala I40134.

[Видео] Флиппером читает карту Indala

Так же, как HID26, уникальный код карт Indala I40134 состоит из 3 байт. К сожалению, структура данных в картах Indala это не публичная информация, и все, кто вынужден поддерживать этот протокол, сами придумывают, какой порядок байт выбрать, и как интерпретировать сигнал на низком уровне.

Все эти протоколы настолько простые, что ID карты можно просто ввести вручную, не имея оригинальной карты под рукой. Можно тупо прислать текстовый ID карты, и владелец Флиппера сможет ввести его вручную.

Ввод ID карты вручную

[Видео] Ввод ID карты Indala вручную без оригинальной карты

Запись болванки 125 кГц

[Видео] Запись болванки T5577

Низкочастотные болванки типа T5577 имеют много разновидностей. Например, существуют варианты, которые маскируются от проверок считывателей, которые пытаются выяснить, является ли эта карта клоном или нет.

Высокочастотные карты 13,56 МГц

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

Высокочастотные метки 13,56 МГц состоят из целого стека стандартов и протоколов — весь этот стек принято называть технологией NFC, что не всегда правильно. Основная часть протоколов основана на стандарте ISO 14443 — это базовый набор протоколов физического и логического уровня, на котором стоят высокоуровневые протоколы, и по мотивам которых созданы альтернативные низкоуровневые стандарты, например ISO 18092.

Наиболее часто встречаемой является реализация ISO 14443-A, ее используют почти все исследуемые мною проездные, пропуска и банковские карты.

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfidУпрощенная архитектура технологии NFC

Упрощенно архитектура NFC выглядит так: на низкоуровневой базе ISO 14443 реализован транспортный протокол, он выбирается производителем. Например, компания NXP придумала свой высокоуровневый транспортный протокол карт Mifare, хотя на канальном уровне, карты Mifare основаны на стандарте ISO 14443-A.

Флиппер умеет взаимодействовать как с низким уровнем протоколов ISO 14443, так и с протоколами передачи данных Mifare Ultralight и EMV банковских карт. Сейчас мы работаем над добавлением поддержки протоколов Mifare Classic и NFC NDEF. Подробный разбор применяемых стандартов и протоколов NFC заслуживает большой отдельной статьи, которую мы планируем сделать позднее.

Голый UID стандарта ISO 14443-A

[Видео] Чтение UID высокочастотной метки неизвестного типа

Все высокочастотные карты, работающие на базе ISO 14443-A, имеют уникальный идентификатор чипа — UID. Это серийный номер карточки, подобно MAC-адресу сетевой карты. UID бывает длиной 4, 7 и очень редко 10 байт. UID не защищен от чтения и не является секретным, иногда он даже написан на карточке.

В реальности существуют много СКУД-ов, использующих UID для авторизации доступа. Такое встречается, даже когда RFID-метки имеют криптографическую защиту. По уровню безопасности это мало чем отличается от тупых низкочастотных карт 125 кГц. Виртуальные карты (например, Apple Pay) намеренно используют динамический UID, чтобы владельцы телефонов не использовали платежное приложение как ключ для дверей.

[Видео] iPhone каждый раз генерирует случайный виртуальной UID карты в ApplePay

Так как UID это низкоуровневый атрибут, то возможна ситуация, когда UID прочитан, а высокоуровневый протокол передачи данных еще неизвестен. Во Флиппере реализованы чтение, эмуляция и ручное добавление UID, как раз для примитивных считывателей, которые используют UID для авторизации.

Различие чтения UID и данных внутри карты

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfidЧтение NFC разделено на два типа – низкоуровневое и высокоуровневое

Чтение меток 13,56 МГц во Флиппере можно разделить на 2 части:

Для чтения карты с помощью конкретного высокоуровневого протокола нужно перейти в NFC —> Run special action и выбрать необходимый тип метки.

Mifare Ultralight

[Видео] Чтение данных с карты Mifare Ultralight

Mifare — семейство бесконтактных смарт-карт, имеющих собственные разные высокоуровневые протоколы. Mifare Ultralight — самый простой тип карт из семейства. В базовой версии он не использует криптографическую защиты и имеет только 64 байта встроенной памяти. Флиппер поддерживает чтение и эмуляцию Mifare Ultralight. Такие метки иногда используют как домофонные брелки, пропуска и проездные. Например, московские транспортные билеты «единый» и «90 минут» выполнены как раз на основе карт Mifare Ultralight.

Банковские карты EMV (PayPass, Apple Pay)

[Видео] Чтение данных из банковской карты

EMV (Europay, Mastercard, and Visa) — международный набор стандартов банковских карт. Подробнее про работу бесконтактных банковских карт можно почитать в статье Павла zhovner Как украсть деньги с бесконтактной карты и Apple Pay.

Банковские карты — это полноценные смарт-карты со сложными протоколами обмена данными, поддержкой ассиметричного шифрования. Помимо чтения UID, с банковской картой можно обменяться сложными данными, в том числе вытащить полный номер карты (16 цифр на лицевой стороне карты), срок действия карты, иногда имя владельца и даже историю последних покупок.

Стандарт EMV имеет разные высокоуровневые реализации, поэтому данные, которые можно достать из карт могут отличаться. CVV (3 цифры на обороте карты) считать нельзя никогда.

Банковские карты защищены от replay-атак, поэтому скопировать ее Флиппером, а затем эмулировать и оплатить покупку в магазине у вас не получится.

Виртуальная карта ApplePay VS Физическая банковская карта

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfidСравнение безопасности виртуальных и физических банковских карт

В сравнении с пластиковой банковской картой, виртуальная карта в телефоне выдает меньше информации и более безопасна для платежей оффлайн.

Преимущества виртуальной карты Apple Pay, Google Pay:

Поддержка банковских карт во Флиппере сделана исключительно для демонстрации работы высокоуровневых протоколов. Мы не планируем никак развивать эту функцию в дальнейшем. Защита бесконтактных банковских карт достаточно хороша, чтобы не переживать о том, что устройства вроде Флиппера могут быть использованы для атак на банковские карты.

Наши соцсети

Узнавайте о новостях проекта Flipper Zero первыми в наших соцсетях!

Источник

Рабочие частоты RFID и их особенности

То количество рабочих частот, которое используется в технологии RFID может неискушенного человека повергнуть в растерянность. Однако, ситуация несколько проще, чем это может показаться вначале. Здесь мы обсудим, какие существуют виды RFID по частотам, что это означает для пользователя, какими принципами следует руководствоваться при выборе конкретного решения. Разумеется, основное внимание мы уделим распространенным частотным диапазонам, которые применяются.

Если идти с минимальных частот к максимальным, существуют четыре диапазона, которые наиболее широко применяются: 125 кГц, 13.56 МГц, 860-928 МГц, 2,45 ГГц.

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

Частота 125 кГц называется в иностранных источниках LF RFID (т.е. Low Frequency). Cчитывающее оборудование и радиометки этого типа появились раньше всего, в середине-конце 80-x годов прошлого века, однако широко применяется и по сей день. Ключевой особенностью этого частотного диапазона RFID является то, что не существует общеупотребительных стандартов радиоинтерфейса для 125 кГц. Поэтому здесь используется несколько схем модуляции радиосигнала и несколько разновидностей кодирования передаваемых данных. Это прежде всего определяется используемой в радиометке микросхемой транспондера.

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

Частота 13.56 МГц в иностранных источниках обозначается HF (High Frequency). Это рабочая частота, для которой впервые введены общемировые и широко поддержанные стандарты ISO 14443 (proximity карты) и ISO 15693 (vicinity карты). Все радиометки и считыватели этого стандарта поддерживают антиколлизию (т.е. способность читать много меток в поле зрения).

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

Рабочие частоты RFID и их особенности

из категории » Оборудование RFID » в сервисах:

Просто нажмите на кнопку нужного Вам сервиса и данная статья будет сохранена.

Источник

RFID-системы стандарта EPC Gen2

Данные системы находятся несколько «в тени» от взгляда широких масс, т. к. ориентированы больше на промышленные применения, но степень их развития и темпы роста рынка этих систем, как мне кажется, заслуживают к ним большего внимания.
Кратко расставим существующие RFID-системы по основным параметрам.

Активные-пассивные

Если метки не используют собственную батарею питания, а получают его от поля считывателя – пассивные. Если используется батарейное питания, то активные.
Еще есть «полу-пассивные» метки (также называются «BAP» – Battery Assisted Passive), которые используют радиоинтерфейс и протокол обмена пассивной системы, но есть батарея питания. Постоянное питание чипа таких меток может несколько улучшать ее характеристики по дальности регистрации, но чаще дополнительное питание используется для встроенных датчиков (температуры, ускорения, влажности и т. п.). Батарея используется для питания датчиков и накопления данных при нахождении метки вне поля считывателя, с последующим их считыванием при входе в зону регистрации.
Активные метки, достаточно дорогие, большие по размерам, но зато дистанция их регистрации может достигать километра. Также есть специальный класс активных меток RTLS – Real Time Locating Systems – системы определения положения в реальном времени.
Важным отличием пассивных меток от активных является то, что пассивные метки НЕ ИЗЛУЧАЮТ радиосигнал. Пассивные метки, отвечая на сигнал считывателя, только модулируют нагрузку своей антенной системы в момент ее нахождения в поле несущей частоты считывателя. Считыватель обнаруживает и детектирует эти слабые отраженные модуляции на фоне непрерывного излучения несущей частоты через свою приемопередающую антенну.
Системы EPC Gen2 относятся к пассивным, но бывают и полу-пассивные специальные метки.

Частотный диапазон

LF – Low Frequency, 125-135 кГц. «Обычные» метки-карточки или домофонные брелки для систем контроля доступа, метки-капсулы для «чипирования» животных (но и среди высших мыслящих существ также есть любители встроенных уникальных идентификаторов).

HF – High Frequency, 13,553-13,567 МГц. Все транспортные проездные карты, банковские беспроводные карты, устройства и метки NFC. Также есть более «простые» метки без криптографических функций, содержащие только идентификатор.

UHF – Ultra High Frequency. Диапазоны 433,075-434,790 МГц и 2400-2483,5 МГц используются активными метками и RTLS, а также брелками сигнализаций, беспроводными клавиатурами, мышками и т. п.

Для EPC Gen2 в мировом масштабе используется UHF диапазон 860-960 МГц, но локально в странах и регионах используются более узкие полосы.
В РФ используются частоты европейского диапазона 865,6-867,6 МГц в соответствии со стандартом ETSI EN302-208-1 V1.2.1, хотя формально выделенная в РФ полоса уже — 866,6-867,4 МГц.
Стандарт EPC Gen2 (полностью Electronic Product Code Class 1 Generation 2) разработан международной организацией GS1 EPC Global. Ему также соответствует стандарт ISO/IEC 18000-63(С). Соответствующая национальная версия ГОСТ разрабатывается.

Наиболее массово производятся метки-наклейки на бумажной или пластиковой основе в рулонах, с которых метки отделяются вручную или с помощью аппликатора и наклеиваются на заданный объект.
Конструктивно метки представляют из себя электронный чип, закрепленный с помощью специального клея на контактных площадках металлизированной антенны.
Форма антенны рассчитывается специально для удовлетворения оптимальных параметров согласования по радиосигналу с чипом метки и может принимать довольно разнообразные формы, хотя фактически большинство из них является «редуцированными» диполями, т. е., диполями по характеристикам излучения, но меньшими размерам, чем половина длины волны, что в этом диапазоне около 17 см.
Антенны разных конфигураций имеют отличия в диаграммах направленности, энергоэффективности и «устойчивости» резонансной настройки антенны при ее размещении на разных объектах.

В среднем действует правило – чем меньше максимальный линейный размер метки, тем меньше ее «чувствительность» и дистанция регистрации, хотя между конкретными моделями меток сравнимого размера есть отличия.
Кроме схемы антенны «редуцированный диполь» также существуют специальные «ближнепольные» метки только с петлевой антенной (в этом они аналогичны меткам LF и HF, которые только такими и бывают). Такие метки небольшие по размерам (например, 12х9 мм) и регистрируются с расстояния не больше 20-25 см, но если их использовать для «сложных» условий окружения жидкостями и металлическими элементами, то разницы по сравнению с «большими» метками в качестве и дистанции регистрации не будет – но размер их существенно меньше.
«Большие» метки наклейки с большой дистанцией регистрации имеют размер по длинной стороне 80-100 мм.
На основе тонких меток также делаются метки-карточки из пластика стандартных размеров.
Есть и специальные «устойчивые» к внешним воздействиям метки, которые могут использоваться в прачечных или химчистках.

Метка для прачечных:
на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

Метки-наклейки экранируются и не работают на металлических или металлизированных поверхностях (даже на «полупрозрачном» металлическом напылении, типа антистатических пакетиков для компьютерных компонентов).
Для работы на металлических объектах существуют специальные метки, они более «толстые», от нескольких миллиметров, и существенно дороже, но зато работают на металлических объектах и дистанция регистрации может быть даже больше, чем у меток-наклеек (но также в среднем работает правило – чем больше метка, тем больше дистанция).
Конструктивно метки на металл более сложны и существенно дороже. Часто используются вариации «патч-антенны» с воздушным или более плотным диэлектриком между рабочей и «земляной» пластиной, которая располагается в сторону металла.

Метки на металл:
на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

«Содержание» RFID-меток EPC Gen2

Память меток стандарта Gen2 разделена на 4 банка, адресуемых командами радиоинтерфейса:

TID (10, Transponder ID). Идентифицирует производителя и модель чипа метки выделенным уникальным кодом. Также здесь может находиться дополнительный уникальный идентификатор каждой отдельной метки (Serialized TID), который может использоваться как средство защиты метки от подделки. EPC меток может быть продублирован, но банк TID защищается от перезаписи при производстве метки и при наличии Serialized TID совместно с идентификатором производителя и чипа гарантировано уникален.

User Memory (11) – не обязательный, может отсутствовать. Используется для хранения любой информации. Если есть, то обычный размер от 32 до 512 бит. Есть модели и с большим объемом, но у них часты проблемы совместимости со считывателями.
Содержание банков EPC, User Memory и по отдельности областей KILL и ACCESS может быть защищено от изменения значения, временно или навсегда (Permalock = Permanent Lock).

RFID-считыватели EPC Gen2

Стационарные считыватели и зоны регистрации

Стационарные считыватели самые производительные и обеспечивают максимальные скорости и дальности регистрации, что достигается за счет использования высокопроизводительных цифровых сигнальных процессоров, выделяющих слабый сигнал ответа метки на фоне несущей радиочастоты, шумов и помех.

Стационарный считыватель:
на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

У стационарных считывателей могут быть разные интерфейсы – RS232/485, USB, Wiegand, но «пром-стандартным» является UTP Ethernet.
У стационарных считывателей обычно от 2 до 8 разъемов для подключения антенн через встроенный коммутатор, т. е., одновременно работает только одна антенна. Переключение между антеннами происходит автоматически и довольно быстро, но настройками можно выбирать, какие антенны задействованы и индивидуально настраивать радиочастотные мощности для каждого выхода.
Также обычно все стационарные считыватели имеют специальный разъем с 4-8 цифровыми линиями для управления внешними устройствами – включением сигнальных ламп, открытием дверей, шлагбаумов, получения внешних сигналов – датчиков появления объектов, открытия дверей, и т. п.

Портальные зоны регистрации

Портальная зона регистрации с 4-мя патч-антеннами:
на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

В случаях, когда поток перемещения меток через зону регистрации небольшой и установка портального считывателя по бокам от прохода не желательна, возможно расположение антенн сверху. Бывают интегрированные потолочные считыватели, содержащие все в одном корпусе, включая считыватель и антенну.

Потолочный считыватель:
на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

Стационарные зоны считывания меток транспорта

Оптимальное расположение меток на автотранспорте – на лобовом стекле или на «торпеде» под ним, хотя также метки встраиваются в номерные знаки, но это уже другой разговор.
Возможно, что в РФ скоро это придется увидеть в своих номерных знаках (и за свои же деньги).
Регистрирующие антенны располагаются с направлением излучения вертикально вниз над центром полосы проезда, если предполагается двустороннее движение по полосе, либо под углом в сторону приближения автомобилей, что улучшает качество регистрации (но в другом направлении метки могут вообще не регистрироваться — тогда использовать пару антенн «смотрящих» в разные стороны).

Считывающие антенны меток автотранспорта:
на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

RFID-тоннель

При необходимости регистрации большого числа меток в небольшой зоне с линейными размерами менее метра оправдано использование тоннелей или боксов, содержащих антенны, окружающие зону регистрации с возможно большего числа сторон и направлений, и внешние экранирующие элементы, предотвращающие «паразитные» регистрации меток снаружи.

RFID-тоннель:
на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

Еще одной эффективной областью применения RFID-тоннелей или боксов является регистрация меток на «сложных» объектах, содержащих воду, электролиты или большое число «вкраплений» металлов (например, при одновременной регистрации 200 меток на бирках ювелирных изделий в групповых упаковках).
В таких условиях считывание меток эффективно только в «ближней» зоне на расстоянии не больше 20-25 см от антенны. При этом для считывания более эффективно использование специальных «ближнепольных» петлевых антенн, а не патч-антенн.

Мобильные RFID-считыватели (терминалы)

Важный и полезный тип считывателей, позволяющий ускорять многие операции с товарами или объектами: поиск заданных объектов по меткам (на складе, в магазине, в библиотеке); быстрая инвентаризация складов или основных фондов; контроль комплектования заказов.
Важно, что в отличии от мобильных считывателей LF и HF (включая смартфоны с NFC), у которых дистанция регистрации меток составляет несколько сантиметров и, к сожалению, не сильно отличается от считывания штрих-кода, мобильные Gen2 считыватели бывают с дистанцией регистрации до нескольких метров.
Возможна быстрая регистрация всех меток полки или вешалки с товарами, проходя мимо нее. Хотя скорость регистрации меток мобильными считывателями меньше, чем стационарными, обычно не более 10 уникальных меток в секунду.
Кроме RFID-считывателя в мобильных терминалах обычно есть сканер штрих кода, Wi-Fi, Bluetooth, и могут быть GPS/ГЛОНАС и GSM/3G модули.
Большая часть мобильных терминалов работает на старой доброй Windows Mobile/CE, но уже появляются модели и на Android.
Мобильные терминалы обычно обладают хорошим классом защиты, позволяющим их использовать в производственных и уличных условиях.

Мобильный считыватель:
на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

Настольные считыватели

Современные модели подключаются и питаются по USB и рассчитаны на считывание и запись небольшого числа меток с небольшого расстояния.
Важны как сопутствующие считыватели для начальной привязки и нумерации меток, но могут выполнять и важную роль, например, на рабочем месте библиотекаря для быстрого оформления выдачи или приема сразу стопки книг с RFID-метками (и этот же считыватель используется для быстрой идентификации читателя по его пластиковой карте с меткой EPC Gen2).

Настольный считыватель:
на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

RFID-принтеры

Являются модифицированными принтерами этикеток, в которые при сохранении функции печати добавлен или может быть добавлен RFID-модуль, позволяющий также считывать и записывать RFID-метки, подаваемые из рулона.
Важны при необходимой подготовке большого числа меток, особенно совместно с печатью этикетки.

RFID-принтер:
на какой частоте работает rfid. Смотреть фото на какой частоте работает rfid. Смотреть картинку на какой частоте работает rfid. Картинка про на какой частоте работает rfid. Фото на какой частоте работает rfid

Способы и особенности использования систем EPC Gen2

Ограничения и сложности реализации систем EPC Gen2 связаны с где же взять столько денег особенностями радиосвязи в принципе, а также тем, что названо выше их преимуществом – большой дистанцией регистрации – обычный парадокс.
Радиоволны этого частотного диапазона сильно поглощаются водой и электролитами и экранируются металлическими предметами.
Большая дистанция регистрации приводит к проблеме «паразитных» регистраций. Для обеспечения надежной регистрации одновременно многих меток, которые могут быть в неоптимальной ориентации, экранироваться взаимным близким расположением нескольких меток, присутствием экранирующих или поглощающих предметов, необходима установка мощности регистрации многократно превышающей необходимую для регистрации одиночной метки «в воздухе».
Соответственно, при увеличении мощности начинают регистрироваться метки в «хороших» условиях на больших расстояниях от зоны считывания – до 10 и более метров.
Например, вблизи ворот выезда со склада установлена портальная зона регистрации, которая используется для группового считывания всех меток сформированной паллеты при ее вывозе.
Но при этом запросто будут считываться метки со стеллажей склада (пусть даже только некоторые и не часто), находящиеся на расстоянии 10 метров или даже больше. Складские площади дороги и никто не будет оставлять пустое место 15х15 метров вокруг зоны регистрации. Вариант решения проблемы – отгораживание зоны регистрации экранами-ширмами или «домиками» вокруг зон регистрации.

Системы RFID EPC Gen2 могут быть очень эффективными и примеров их использования уже не мало – складская и транспортная логистика, контроль основных средств (быстрая инвентаризация), контроль автотранспорта, контроль перемещения персонала, библиотеки и архивы, ритейл одежды и обуви, фармацевтика (включая контроль фальсификации), контроль компонентов и запасных частей в авиа и автомобильной промышленности, контроль багажа, контроль почтовых пересылок.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *