на какую глубине плавают подлодки

Максимальная глубина погружения подводных лодок

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Как происходит погружение подводных лодок

Эволюция подводного флота – это постепенное погружение на большую глубину. Если во времена Первой и Второй мировых войн она ограничивалась соответственно 80-100 и 100-150 метрами, то сегодня этот показатель вырос в 3-5 раз.

Как происходит погружение? В надводном положении субмарина мало чем отличается от обычного судна, если не брать в расчет ее специфический внешний вид. Погружение происходит за счет приема в цистерны балласта – забортной воды. Ёмкости расположены между легким и прочным корпусами.

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Всплытие осуществляется «в обратном порядке» — путем продува балласта. Вода выдавливается из цистерн мощным потоком сжатого воздуха. После полного погружения глубина, на которой находится лодка, регулируется специальными рулями.

Характеристики глубины погружения

Способность субмарины к погружению характеризуется двумя основными показателями – рабочей (оперативной) и предельной глубиной. В первом случае речь идет о глубине, на которую лодка может погружаться без каких-либо ограничений на протяжении всего срока ее эксплуатации.

Предельная глубина погружения обозначает ту границу, ниже которой может начаться разрушение обшивки и всей конструкции. Обычно сразу после спуска на воду субмарину отправляют на предельную глубину, где ее «обкатывают» какое-то время. У каждого типа подводных лодок этот показатель индивидуален.

Абсолютным рекордсменом максимального погружения до сего времени остается советская АПЛ «Комсомолец», «нырнувшая» в 1985 году почти на 1030 метров. Увы, ее судьба в дальнейшем сложилась трагически. Спустя 4 года, в результате пожара, приведшего к необратимым разрушениям корпуса, она затонула в Норвежском море.

Глубина – спасение или погибель

За управляемость субмарины в вертикальной плоскости отвечают, как правило, две пары горизонтальных рулей – кормовые и носовые. В зависимости от их положения лодка получает дифферент на нос или корму. Задача командира и экипажа – осуществлять необходимое маневрирование в рамках технических возможностей лодки, чтобы, если такое случится, предельное, максимальное погружение не оказалось последним.

Особенности АПЛ России и США

Основные отличия лежат в «архитектуре». Американские субмарины однокорпусные: давлению противостоит единый корпус обтекаемой формы. В отличие от них, советские, а позже российские АПЛ – своеобразная «матрешка», где под внешним обтекаемым легким корпусом находится прочный внутренний. Настоящий рекордсмен по количеству корпусов – знаменитый «Тайфун» (проект 941). У самой большой АПЛ в мире внутри легкого корпуса размещаются пять прочных.

По мнению экспертов, двухкорпусные лодки более живучи, хотя и более тяжелы. К примеру, одно лишь резиновое звукоизолирующее покрытие «Тайфуна» весит 800 тонн, что несколько больше, чем вся американская АПЛ NR-1.

Перспективы российского атомного подводного флота

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

За последние 4 года состав ВМФ России пополнился четырьмя современными АПЛ: «Северодвинск» (пр. «Ясень») с рабочей и предельной глубинами погружения соответственно 520 и 600 м, «Владимир Мономах» – 400 и 480 м, «Юрий Долгорукий» — 400 и 450 м, «Александр Невский» — 400 и 480 метров. На очереди еще 11 атомных субмарин проектов «Борей-А» и «Ясень».

Однако глубина погружения – не единственное их преимущество. Сегодня гораздо большее значение приобретает малошумность. Как утверждают эксперты, здесь Россия вышла на лидирующие позиции в мире.

Источник

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодкиmasterok

Мастерок.жж.рф

Хочу все знать /наука, история, политика, творчество/

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Подводная лодка может передвигаться как по поверхности воды, так и погружаться глубоко в недра мирового океана. При этом многим наверняка было бы интересно узнать, как ведет себя экипаж субмарины и какие меры он предпринимает, когда подводная лодка отказывается в морском шторме.

Может ли она в такой момент уйти под воду и если да, то как глубоко она должна это сделать?

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

В 1805 году известный ирландский гидрограф Фрэнсис Бофорт разработал и предложил для всеобщего использования эмпирическую шкалу, которая позволяла рассчитывать высоту волны, опираясь на значения скорости ветра. Первоначальная версия шкалы Бофорта оказалась не слишком-то удобной, точной и простой в использовании, а потому на протяжении последующих двух десятков лет ее создатель занимался активным процессом улучшения своего творения. Принята на вооружение в большинстве морских держав шкала Бофорта была только в 1830 году.

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Шкала состояла из 17 баллов для обозначения грозности морских волн (или их полного отсутствия). Для большинства ситуаций в море (в том числе штормовых) нужно было только первые 12 значений шкалы. Баллы 13-17 были актуальны лишь для Тихого океана с его регулярными тайфунами. Система Бофорта позволяла рассчитывать скорость, величину и силу волны исходя из скорости ветра.

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Так, 10 баллам по шкале Бофорта соответствует скорость ветра в 90-100 км/ч и высота волны в 12 метров. При таких условиях волна будет двигаться со скоростью 55 км/ч. Средняя длина волны составит 210 метров, а период прохождения волн будет равняться 14 секундам. Кроме того, любая волна распространяется циркуляционным образом от поверхности водной глади в ее недра, постепенно ослабевая. Полностью отсутствовать циркуляционное движение, создаваемое морской волной, будет на глубине равной от 0.5 длины этой волны. При 10 баллах – это значение составляет около 105 метров.

Таким образом и получается рассчитывать необходимую глубину погружения. В описанных условиях, подлодка должна будет «лечь» килем (нижней частью корпуса) на глубину в 120 метров, так как средняя высота боевых субмарин от киля до верхней точки мостика составляет около 15 метров.

Источник

Наибольшая глубина погружения подлодок ВМФ России, ВМС США и Японии

Факт существования батискафа, сумевшего покорить глубочайшую бездну, свидетельствует о технической возможности создания обитаемых аппаратов для погружений на любые глубины.

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Почему же ни одна из современных подлодок и близко не способна погрузиться — даже на 1000 метров?

Полвека назад собранный из подручных средств стандартной стали и плексигласа батискаф достиг дна Марианской впадины. И мог бы продолжить свое погружение, если бы в природе встречались большие глубины. Безопасная расчетная глубина для «Триеста» составляла 13 километров!

Свыше 3/4 площади Мирового океана приходится на абиссальную зону: океанское ложе с глубинами свыше 3000 м. Подлинный оперативный простор для подводного флота! Почему никто не использует эти возможности?

Покорение больших глубин никак не связано с прочностью корпуса «Акул», «Бореев» и «Вирджиний». Проблема заключается в другом. И пример с батискафом «Триест» здесь совершенно ни при чем.

Они похожи, как самолет и дирижабль

Батискаф — это «поплавок». Цистерна с бензином, с закрепленной под ней гондолой экипажа. При принятии на борт балласта конструкция обретает отрицательную плавучесть и погружается в глубину. При сбрасывании балласта — возвращается на поверхность.

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

В отличие от батискафов, подводным лодкам требуется в течение одного погружения многократно изменять глубину нахождения под водой. Иначе говоря, подводный корабль обладает способностью многократно изменять запас плавучести. Это достигается путём заполнения забортной водой балластных цистерн, которые при всплытии продуваются воздухом.

Обычно на лодках применяются три воздушные системы: воздух высокого давления (ВВД), среднего (ВСД) и низкого давления (ВНД). К примеру, на современных американских атомоходах запасы сжатого воздуха хранятся в баллонах под давлением 4500 фунтов на кв. дюйм. Или, по-человечески, примерно 315 кг/см2. Однако ни одна из систем-потребителей сжатого воздуха не использует ВВД напрямую. Резкие перепады давления вызывают интенсивное обмерзание и закупорку арматуры, одновременно создавая опасность компрессионных вспышек паров масла в системе. Повсеместное применение ВВД под давлением свыше 300 атм. создало бы недопустимые опасности на борту субмарины.

И здесь в действие вступают законы драматургии!

С погружением в морские глубины на каждые 10 метров давление возрастает на 1 атмосферу

На глубине 1500 м давление составляет 150 атм. На глубине 2000 м давление 200 атм. Это как раз соответствует максимальному значению ВСД и ВНД в системах подводных лодок.

Ситуация усугубляется ограниченными объемами сжатого воздуха на борту. Особенно после продолжительного нахождения лодки под водой. На глубине 50 метров имеющихся запасов может быть достаточно для вытеснения воды из балластных цистерн, но на глубине 500 метров этого хватит лишь для продувания 1/5 их объема. Большие глубины — всегда риск, и там требуется действовать с предельной осторожностью.

В наши дни существует практическая возможность создания подлодки с корпусом, рассчитанным на глубину погружения 5000 метров. Но для продувания цистерн на такой глубине потребовался бы воздух под давлением свыше 500 атмосфер. Сконструировать трубопроводы, клапаны и арматуру, рассчитанные под такое давление, при сохранении их разумной массы и исключения всех связанных опасностей на сегодняшний день является технически неразрешимой задачей.

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Современные подлодки строятся по принципу разумного баланса характеристик. Зачем делать высокопрочный корпус, выдерживающий давление километровой толщи воды, если системы всплытия рассчитаны на гораздо меньшие глубины. Погрузившись на километр, подлодка будет обречена в любом случае.

Однако в этой истории имеются свои герои и отверженные.

Традиционными аутсайдерами в области глубоководных погружений считаются американские подводники

Корпуса американских лодок на протяжении полувека делаются из одного сплава HY-80 с весьма посредственными характеристиками. High-yield-80 = сплав повышенной прочности с пределом текучести 80 000 фунтов на кв. дюйм, что соответствует значению 550 МПа.

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Многие эксперты выражают сомнения в адекватности такого решения. Из-за слабого корпуса лодки неспособны в полной мере использовать возможности систем всплытия. Которые позволяют продувание цистерн на значительно больших глубинах. По оценкам, рабочая глубина погружения (глубина, на которой лодка может находиться длительное время, совершая любые маневры) для американских субмарин не превышает 400 метров. Предельная глубина — 550 метров.

Применение HY-80 позволяет удешевить и ускорить сборку корпусных конструкций, среди преимуществ всегда назывались хорошие сварочные качества этой стали.

Для ярых скептиков, которые немедленно заявят, что флот «вероятного противника» массово пополняется небоеспособным хламом, нужно заметить следующее. Те различия в темпах кораблестроения между Россией и США обусловлены не столько применением более качественных сортов стали для наших подлодок, сколько другими обстоятельствами. Ну да ладно.

«Комсомолец»

Неуловимый «Майк» (К-278 по классификации НАТО) установил абсолютный рекорд глубины погружения среди подводных лодок — 1027 метров.

Предельная глубина погружения «Комсомольца» по расчетам составляла 1250 м.

Среди главных отличий конструкции, несвойственных другим отечественным подлодкам, — 10 бескингстонных цистерн, размещенных внутри прочного корпуса. Возможность стрельбы торпедами с больших глубин (до 800 метров). Всплывающая спасательная капсула. И главная изюминка — аварийная система продувания цистерн с помощью газогенераторов.

Реализовать все заложенные преимущества позволил корпус, изготовленный из титанового сплава.

Сам по себе титан не являлся панацеей при покорении морских глубин. Главным при создании глубоководного «Комсомольца» были качество сборки и форма прочного корпуса с минимумом отверстий и ослабленных мест.

Титановый сплав 48-Т с пределом текучести 720 МПа лишь незначительно превосходил по прочности конструкционную сталь HY-100 (690 МПа), из которой изготавливались подлодки «СиВулф».

Другие описываемые «преимущества» титанового корпуса в виде малых магнитных свойств и его меньшей подверженности коррозии сами по себе не стоили затраченных средств. Магнитометрия никогда не являлась приоритетным способом обнаружения лодок; под водой все решает акустика. А проблема морской коррозии уже лет двести решается более простыми методами.

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Титан с точки зрения отечественного подводного кораблестроения обладал ДВУМЯ реальными преимуществами:

а) меньшей плотностью, что означало более легкий корпус. Появившиеся резервы тратились на другие статьи нагрузки, например, ГЭУ большей мощности. Неслучайно подлодки с титановым корпусом (705(К) «Лира», 661 «Анчар», «Кондор» и «Барракуда») строились как покорители скорости.;

б) Среди всех высокопрочных сталей и сплавов титановый сплав 48-Т оказался наиболее технологичным в обработке и при сборке корпусных конструкций.

«Наиболее технологичный» — не значит простой. Но сварочные качества титана хотя бы позволяли производить сборку конструкций.

За океаном имели более оптимистичный взгляд на применение сталей. Для изготовления корпусов новых подлодок XXI века была предложена высокопрочная сталь марки HY-100. В 1989 году в Штатах заложили головной «СиВулф». Спустя два года оптимизма поубавилось. Корпус «СиВулфа» пришлось разобрать на иголки и начинать работу заново.

В настоящее время многие проблемы решены, и стальные сплавы, эквивалентные по свойствам HY-100, находят более широкое применение в кораблестроении. По некоторым данным, подобная сталь (WL = Werkstoff Leistungsblatt 1.3964) применяется при изготовлении прочного корпуса немецких неатомных подлодок «Тип 214».

Существуют еще более прочные сплавы для изготовления корпусов, например, стальной сплав HY-130 (900 МПа). Но из-за плохих сварочных свойств корабелы считали применение HY-130 невозможным.

Пока не поступили новости из Японии.

耐久 значит предел текучести

Как утверждает старая пословица: «Что бы вы ни умели делать хорошо, всегда найдется азиат, который делает это лучше».

В открытых источниках присутствует крайне мало информации о характеристиках японских боевых кораблей. Однако экспертов не останавливают ни языковой барьер, ни параноидальная секретность, свойственная вторым по силе ВМС в мире.

Из доступной информации следует, что самураи наряду с иероглифами широко используют английские обозначения. В описании подлодок присутствует сокращение NS (Naval Steel — военно-морская сталь), сочетаемая с цифровыми индексами 80 или 110.

В метрической системе счисления «80» при обозначении марки стали, скорее всего, означает предел текучести 800 МПа. Более прочная сталь NS110 имеет предел текучести 1100 МПа.

С точки зрения американца, стандартная для японских подлодок сталь носит обозначение HY-114. Более качественная и прочная — HY-156.

Немая сцена

«Кавасаки» и «Мицубиси Хэви Индастриз» без всяких громких обещаний и «Посейдонов» научились изготавливать корпуса из материалов, ранее считавшихся несваримыми и невозможными при постройке подлодок.

Приведенные данные соответствуют устаревшим субмаринам с воздухонезависимой установкой типа «Оясио». В составе флота 11 единиц, из которых две самые старые, вступившие в строй в 1998-1999 гг., переведены в разряд учебных.

«Оясио» имеет смешанную двухкорпусную конструкцию. Наиболее логичное предположение — центральная секция (прочный корпус) изготовлена из наиболее прочной стали NS110, в носовой и кормовой частях лодки применяется двухкорпусная конструкция: легкая обтекаемая оболочка из NS80 (давление внутри = давлению снаружи), прикрывающая цистерны главного балласта, вынесенные за пределы прочного корпуса.

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Современные японские субмарины типа «Сорю» считаются улучшенными «Оясио» с сохранением основных конструктивных решений, доставшийся им от предшественников.

При наличии прочного корпуса из стали NS110 рабочая глубина «Сорю» оценивается как минимум в 600 метров. Предельная — 900.

С учетом представленных обстоятельств ВМС самообороны Японии на сегодняшний день обладают самым глубоководными флотом боевых подлодок.

Японцы «выжимают» всё возможное из доступного. Другой вопрос, насколько это поможет в морском конфликте. Для противостояния в морских глубинах необходимо наличие ядерной силовой установки. Жалкие японские «полумеры» с увеличением рабочей глубины или созданием «лодки на батарейках» (удивившая мир подлодка «Орю») похожи на хорошую мину при плохой игре.

С другой стороны, традиционное внимание к мелочам всегда позволяло японцам иметь преимущество над противником. Появление ядерной силовой установки для ВМС Японии — вопрос времени. Но у кого в мире еще имеются технологии изготовления сверхпрочных корпусов из стали с пределом текучести 1100 МПа?
Олег Капцов

Источник

Топ-3 субмарин по глубине погружения

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

3. Борей

К-551 «Владимир Мономах», К-549 «Князь Владимир». Еще шесть лодок находятся на стадии создания. Ожидается, что они встанут в строй в течение 2020-х годов, усилив боевую мощь российского атомного подводного флота.

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Глубина погружения АПЛ «Борей» в среднем составляет около 480 метров. Конечно, это далеко не рекорд «Комсомольца», но новые субмарины оставляют позади многие британские, французские, японские, китайские подводные лодки.

2. Вирджиния

Подводные лодки класса «Вирджиния» представляют собой многоцелевые атомные субмарины четвертого поколения, находящиеся на вооружении Военно-морских сил США. Их проектирование началось еще в конце 1980-х годов, а в 2004 году в строй встала первая лодка подобного класса SSN-774 «Вирджиния». Ожидается, что в обозримом будущем в распоряжении ВМС США окажутся не менее 30 подводных лодок класса «Вирджиния». В военно-морском ведомстве рассчитывают, что субмарины заменят АПЛ класса «Лос-Анджелес», которые выпускались двадцать лет, с 1976 по 1996 гг.

на какую глубине плавают подлодки. Смотреть фото на какую глубине плавают подлодки. Смотреть картинку на какую глубине плавают подлодки. Картинка про на какую глубине плавают подлодки. Фото на какую глубине плавают подлодки

Предельная глубина погружения субмарин класса «Вирджиния» составляет 488 метров, хотя некоторые эксперты называют и другие цифры – 500 и даже 600 метров. В любом случае, подлодки данного класса обладают способностью к погружению на большую глубину, что делает их опасным и коварным противником.

1.Ясень

На первом месте заслуженно стоят российские подводные лодки проекта 885 «Ясень» (885М «Ясень-М»). Первая подводная лодка данного класса К-560 «Северодвинск» вошла в состав Северного флота ВМФ России в 2014 году, а на воду была спущена четырьмя годами ранее.

Источник

Новое в блогах

К вопросу о глубине погружения АПЛ

Всем известно что максимальная глубина океана 11 километров в Марианской впадине, однако в океанах и морях имеется много мелководных районов. Какой должна быть глубина погружения будущих подводных лодок? На этот вопрос можно ответить, если проанализировать распределение глубин по площади Мирового океана. Такой анализ показывает, что подводная лодка с глубиной погружения 5500 метров может достичь дна на 90% площади океанов и морей, а с глубиной погружения 4600 метров – на 60% площади. Возможность достичь дна в любой точке океана открывает возможность применять новую тактику, превращающую АПЛ в решающий фактор действий на океанских ТВД.

В практике подводного кораблестроения используются следующие понятия глубин погружения: рабочая, предельная и расчётная (разрушающая). Отношение расчётной глубины к рабочей называется коэффициентом запаса, обычно он 1,5 – 2. Рабочая глубина погружения подводных лодок времён WW2 составляла 100 – 150 метров. У американских подводных лодок постройки 1950-х 200 – 250 метров, у АПЛ построенных в 1960-е увеличена до 350 – 400 метров.

Дальнейший рост глубины зависит от возможности повышения прочности корпуса. На АПЛ имеются два корпуса: прочный и лёгкий. В прочном корпусе размещается внутреннее оборудование, экипаж, а лёгкий образуют балластные цистерны погружения и всплытия.

На современных ракетных неглубоководных АПЛ на долю корпусных конструкций приходится 40% весового водоизмещения, из них доля прочного корпуса 20% массы лодки. В отличие от других видов техники, рост массы корпуса АПЛ не является только издержкой, поскольку более массивный корпус одновременно увеличивает стойкость к действию средств поражения, в том числе ядерных.

В качестве материала прочных корпусов АПЛ в 1960-е применялась высокопрочная сталь с пределом текучести 70 кг/мм2. По прочностным качествам она вдвое превосходит сталь, широко используемую в общем машиностроении.

Глубина погружения экспериментальной подводной лодки ВМФ США «Дельфин» 1200 метров, применена сталь с пределом текучести 70 кг/мм2, на долю прочного корпуса приходится 60% массы данной лодки.

Каковы же перспективы повышения механических характеристик корпусных материалов? Ещё в начале 1960-х в качестве материала ракет «Поларис» использовалась сталь с пределом текучести 140 кг/мм2. Интересно, что в ракетостроении такая сталь не выдержала конкуренции со стеклопластиком. Для конструкций водоизмещением менее 1000 тонн перспективны также алюминиевые сплавы. Однако подводники США долгое время продолжали использовать сталь старых сортов с высокой усталостной прочностью.

В СССР широкое распространение получили титановые сплавы плотностью 4500 кг/м3 с пределом текучести 120 кг/мм2, они эквивалентны стали с б(0.2) = 210 кг/м3. Вопрос усталостной прочности титановых сплавов во многом решается тем, что на глубине более 200 метров подводная лодка не испытывает качки даже при штормовых условиях на поверхности океана.

К какому времени будет решена задача создания боевых атомных подводных лодок с рабочими глубинами до 5000 метров, трудно сказать. АПЛ «Комсомолец» имела рабочую глубину 2000 метров, позволившую с уверенностью совершить рекордное погружение на 1020 метров вскоре после спуска лодки на воду.

Итак, вопрос в следующем:
Нужны ли SCWR для перспективных АПЛ с рабочей глубиной погружения 5000 метров?

SCWR должен иметь давление выше критических 225 атмосфер. При 300 атмосферах фазовый переход вода-пар, растягиваясь на десятки градусов, не имеет характера скачка плотности, чем открывает возможность спектрального регулирования. Кроме того, если нельзя на глубоководной АПЛ иметь во внутренних трубопроводах давление меньше внешнего, SCWR на перспективных АПЛ нужны.

В первом контуре реактора АПЛ 200 атмосфер соответствует внешнему давлению на двухкилометровой глубине. Целесообразность перехода на SCWR зависит и от того, насколько реалистичным представляется в АПЛ нового поколения существенно превысить эту величину.
Рассмотрим цилиндр радиусом R, длиной L и толщиной оболочки d из материала плотностью p_w. Пусть АПЛ имеет запас плавучести S, доля массы прочного корпуса в общей массе пусть X. Предел текучести материала корпуса обозначим б_02. Запишем условие плавучести:
(2*Pi*(R^2)*d*p_w + 2*Pi*R*d*L*p_w) = (p_H2O)*Pi*(R^2)*L*(1-S)*X;
Слева масса корпуса, справа вытесняемая масса воды. Сокращаем Pi*R:
2*d*(p_w)*(R+L) = R*(p_H2O)*L*(1-S)*X; Выделяем слева знака равенства d/R:
(d/R) = (p_H2O * L* (1-S)*X) / (2*p_w *(R+L));
Теперь вспоминаем что гидростатическое давление P = (p_H2O)*g*H, а для цилиндра если толщина стенки многоменьше радиуса, то выдерживаемое давление P = (б_02)*(d/R) поэтому максимальная глубина погружения по условиям прочности плавучего корпуса H = ( (б_02) / (p_H2O *g))*(d/R)). Подставляя сюда найденное (d/R) сокращаем плотность воды и получаем выражение для H:
H_max = ((б_02) / (2*g*p_w))* (L/(L+R))*(1-S)*X
Хотя для АПЛ это не разрушающая глубина, поскольку предел прочности материалов выше предела текучести, рабочую глубину принимаем в 1,4 раза меньше. Отношение длины к диаметру пусть L/(2R) = 1:6. Применяя обычную корабельную сталь с плотностью p_w = 7800 кг/м3 и прочностью б_02 = 700 МПа, выбрав большой запас плавучести 30% (S=0,3) и массу прочного корпуса 20% от полной массы (это не ухудшает скоростных и других качеств), получаем
H_max = 580 метров. Это легко достижимая величина для стратегических БРПЛ.
Тактические АПЛ логично делать более глубоководными. Применив титановый сплав с прочностью б_02 = 1200 МПа, плотностью 4500 кг/м3, увеличив массу прочного корпуса до 40% общей массы, получаем глубину погружения H_max = 3450 метров.
Примерно такие же цифры получаются для алюминиевых корпусов, а также для стеклопластика, эти варианты актуальны при водоизмещении менее 1000 тонн.

Вывод: отношение прочности к плотности у существующих материалов не позволяет делать скоростные АПЛ на разрушающую глубину 7 километров, необходимую для рабочей глубины 5 километров. Позволяющей достигать дна океана в любой точке на 90% его площади.
Вместе с тем, замысел SCWR легко осуществим при давлении в первом контуре 300 и более атмосфер, когда переход вода-пар перестаёт иметь скачок плотности с ростом температуры. Давление в существующих АЗ реакторов АПЛ, до 200 атмосфер, меньше рабочего забортного давления нового поколения АПЛ. Из этих соображений, SCWR на АПЛ нового поколения нужен. На первом этапе до 300 атмосфер. Можно надеяться, когда-нибудь появятся и АПЛ на 5-километровую рабочую глубину, SCWR которых будет работать при 500 атмосферах.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *