на какую глубину должна быть вкопана железобетонная свая в качестве искусственного заземлителя
Инструкция по устройству сетей заземления и молниезащите
2. Заземлители
2.2. Искусствениые заземлители
2.2.1. При невозможности использования естественных заземлителей, а также в случаях, когда токовые нагрузки на естественные заземлители превышают допустимые (см. гл. 1.7 ПУЭ) или естественные заземлители не обеспечивают безопасных значений напряжения прикосновения по ГОСТ 12.1.038-82, в дополнение к естественным заземлителям необходимо сооружать искусственные стальные вертикальные и горизонтальные заземлители. Искуственные заземлители не должны иметь окраски. ¶
2.2.2. Вертикальные заземлители приведены на рис.4. Длина вертикальных электродов определяется проектом, но не должка быть менее 1 м; верхний конец вертикальных заземлителей должен быть заглублен, как правило, на 0,5-0,7 м. ¶
2.2.3. Горизонтальные заземлители используют для связи вертикальных заземлителей или в качестве самостоятельных заземлителей. Глубина прокладки горизонтальных заземлителей — не менее 0,5-0,7 м. Меньшая глубина прокладки допускается в местах их присоединений к оборудованию, при вводе в здания, при пересечении с подземными сооружениями и в зонах многолетнемерзлых и скальных грунтов. Горизонтальные заземлители из полосовой стали следует укладывать на дно траншеи на ребро (рис. 5). ¶

Рис. 4. Установка вертикальных заземлителей ¶
2.2.4. Горизонтальные заземлители в местax пересечения с подземными сооружениями, железнодорожными путями и дорогами, а также в других местах возможных механических повреждений следует защищать металлическими или асбоцементными трубами. ¶

Рис. 5. Прокладка горизонтальных заземлителей в траншее (а) и совместно с кабелем (б): 1 – полоса; 2 – мягкий грунт; 3 – грунт; 4 – силовые кабели; 5 – контрольные кабели ¶
Прокладку заземлителей параллельно кабелям или трубопроводам следует выполнять на расстоянии не менее 0,3 м, а при пересечениях — не менее 0,1 м. ¶
2.2.5. По условиям механической прочности размеры заземлителей должны быть следующие (не менее): ¶
Диаметр круглых заземлителей, мм: ¶
Сечение прямоугольных заземлителей, мм 2 — 48 ¶
Толщина прямоугольных заземлителей, мм — 4 ¶
Толщина полок угловой стали, мм — 4 ¶
Толщина стенки труб, мм — 3,5 ¶
2.2.6. В случае повышенной коррозионной опасности необходимы следующие мероприятия или их сочетания: использование стали круглого сечения; применение оцинкованных заземлителей; заполнение траншеи влажной утрамбованной глиной; увеличение сечения заземлителя; применение электротехнической защиты. ¶
2.2.7. Сечение заземлителей с учетом коррозионной активности грунта следует выбирать по табл. 3. ¶
2.2.8. Если диаметр горизонтального стального заземлителя меньше 12 мм, то необходимо при расположении этого заземлителя ближе, чем 0,3 м от железобетонного фундамента изолировать часть заземлителя на расстоянии в обе стороны от фундамента до 0,5 м. ¶
2.2.9. Места входа в грунт заземлителей и места пересечения ими грунтов с различной воздухопроницаемостью рекомендуется гидроизолировать. ¶
При пересечении трасс кабелей, имеющих свинцовую или алюминиевую оболочку, с трассой горизонтального стального заземлителя, если оба элемента прокладывают непосредственно в грунте, расстояние между заземлителем и кабелем в местах пересечения должно быть выбрано не менее 1 м. ¶
При невозможности выполнения этого требования кабель, наоборот, рекомендуется прокладывать максимально близко к заземлителю, и его оболочку следует дополнительно соединить с заземлителем. Место соединения необходимо гидроизолировать (см. также п. 2.9). ¶
Гидроизоляцию можно выполнить при помощи специальных коррозионных лент, полихлорвиниловых обмоток и тафтяных лент с пропиткой их горячим битумом. Верхняя точка наложения изоляции должна находиться на 10-15 см выше поверхности грунта, нижняя — на том же расстоянии ниже уровня поверхности или под слоем раздела грунтов в случае их неоднородности. ¶
2.2.10. Общие требования к конструктивному выполнению заземлителей промышленных электроустановок в зависимости от принципа нормирования заземляющего устройства в соответствии с требованиями гл. 1.7 ПУЭ изложены в приложении 1, условия выравнивания потенциалов вокруг промышленной установки или здания, в котором она размещена — в приложении 2, а условия заземления внешней ограды электроустановок — в приложении 3. ¶
Таблица 3. ¶
Коррозионная активность грунта
Материал, рекомендуемый для изготовления заземлителя
Допустимые к применению заземлители
Стальные вертикальные заземлители
Весьма высокая
(ρгр 100 Ом м)
Уголок размером 50х50х5 мм для мягких грунтов и 63х63х6 мм для грунтов средней твердости
Стальные горизонтальные заземлители
Весьма высокая
(ρгр 100 Ом м)
Сталь круглая диаметром 10 мм
Полоса 20х4, 30х4, 40х4 мм
2.2.11. При сооружении искусственных заземлителей в зонах с большим удельным сопротивлением земли ρгр ≥ 500 Ом м)необходимы следующие мероприятия: ¶
1) установка вертикальных заземлителей увеличенной длины, если с глубиной удельное сопротивление грунта снижается, а естественные углубленные заземлители, например скважины с металлическими обсадными трубами, отсутствуют; ¶

Рис. 6. Соединение заземляющих проводников с вертикальными заземлителями; 1 – стержневой заземлитель; 2 – заземляющий проводник из круглой стали; 3 – заземляющий проводник из полосовой стали; 4 – заземлитель из угловой стали ¶
2) установка выносных заземлителей, если вблизи от электроустановок есть участки с меньшим удельным сопротивлением грунта; ¶
3) укладка в траншеи вокруг горизонтальных заземлителей в скальных грунтах влажного глинистого грунта или другого электропроводящего материала с последующей трамбовкой и засыпкой обратным грунтом до верха траншеи; ¶
4) применение искусственной обработки грунта с целью снижения его удельного сопротивления, если другие способы не могут быть применены или не дают необходимого эффекта; ¶

Рис. 7. Соединение заземляющих проводников с горизонтальными заземлителями: а) продольное соединение проводников из полосовой стали, б) ответвление проводника из полосовой стали; в) ответвление проводника из круглой стали; г) продольное соединение проводников из полосовой и круглой стали; д) продольное соединение проводников из круглой стали; е) ответвление проводника из круглой стали; 1 – стальная полоса; 2 – сталь круглая ¶
5) помещение заземлителей в непромерзающие водоемы и талые зоны; ¶
6) использование обсадных труб скважин; ¶
7) применение в дополнение к углубленным заземлителям горизонтальных заземлителей на глубине не менее 0,3 м, предназначенных для работы в летнее время при оттаивании поверхностного слоя земли; ¶
8) создание искусственных талых зон путем покрытия грунта над заземлителем слоем торфа или другого теплоизоляционного материала на зимний период и раскрытия его на летний период, а также использование электроподогрева. ¶
Мероприятия, изложенные в пп. 5-8, относятся к районам многолетнемерзлых пород. ¶
Тест с ответами по теме: “Электробезопасность”
1.Факторы, от которых зависит действие электрического тока на организм человека?
а) Величина тока.+
б) Величина напряжения+
в) Сопротивление тела человека.+
2. Отметьте, какого типа заземляющих устройств не существует?
а) дистанционного+
б) контурного
в) выносного
3. Выберите разрешено ли последовательное заземление частей установки с заземляющим контуром?
а) разрешено
б) запрещено +
в) зависит от каждого конкретного случая
4. Каким образом должно быть произведено присоединение заземляющих проводников?
а) сваркой или болтовым соединением+
б) при помощи специального клея
в) непосредственным контактом
5.Найдите виды поражения электрическим током организма человека:
а) Тепловые.+
б) Радиоактивные.
в) Световые.+
6.Что по Правилам устройства электроустановок вошло в понятие “Прямое прикосновение”?
а) Электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции
б) Электрический контакт людей или животных с токоведущими частями, находящимися под напряжением+
в) Опасное для жизни прикосновение к токоведущим частям, находящимся под напряжением
7. Есть ли у электросварщика право на подключение сварочного аппарата к сети?
а) Есть.
б) Нет.
в) Подключение производит электротехнический персонал.+
8. Чему равна величина электрического тока, которая считается смертельной:
а) 0,005 А.
б) 0,1 А.+
в) 0,025 А.
9.Тепловое поражение электрическим током:
а) Заболевание глаз.
б) Паралич нервной системы.
в) Ожоги тела.+
10.Напряжение, которое является относительно безопасным:
а) 55 В.
б) 36 В.+
в) 12 В.+
11. Защитное заземление:
а) Преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством
б) Заземление, выполняемое в целях электробезопасности+
в) Заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности)
12.Условия, которые способствуют повышению опасности поражения электрическим током?
а) Влага на оборудовании и одежде электросварщика.+
б) Использование при работе резиновых ковриков, калош.
в) Работа на заземленном сварочном аппарате.
13.Что нужно сделать, когда обнаружена неисправность сварочного аппарата?
а) Отремонтировать своими силами.
б) Вызвать электрика.
в) Доложить о неисправности своему руководителю.+
14. Глубина, на которую должна быть вкопана железобетонная свая в качестве
искусственного заземлителя?
а) > 2 м.
б) > 3 м.
в) > 5 м.+
15. Что из данного не подлежит заземлению?
а) арматура изоляторов+
б) металлические корпуса электроустановок
в) каркасы распределительных щитов
16. Принцип действия защитного заземления заключается в:
а) отключении электроустановки в случае короткого замыкания
б) снижении напряжения прикосновения+
в) снижении напряжения между корпусом и землей
Заземляющие устройства, правила монтажа, глубина залегания, нормы установки

— прокладка проводников для заземления;
— соединение между собой заземляющих проводников;
— подключение к электрооборудованию и заземлителям заземляющих проводников.
Для погружения вертикальных заземлителей на основе угловой стали либо отбракованных труб пользуются методом вдавливания или забивки. Если сталь круглая, то применяется вдавливание или ввёртывание. Для выполнения данных работ используют специальные приспособления и механизмы: копры для забивки в грунт, механизм ПЗД-12 для ввёртывания заземляющих электродов в грунт, приспособления к сверлилке для ввёртывания стержневых электродов в грунт.
Чаще всего, чтобы организовать заземление, применяются электрозаглубители, которые имеют редуктор и стандартную электросверлилку. Редуктор служит для изменения частоты вращения, вплоть до менее 100 об/мин, чтобы максимально увеличить на ввёртываемом электроде крутящий момент. В случае использования заглубителя, к концу заземлителя приваривается наконечник-забурник, позволяющий разрыхлить грунт, тем самым облегчая погружение электрода. В практике монтажа используются различные виды наконечников, но наиболее распространённым является наконечник в виде изогнутой по винтовой линии стальной полосы шириной 16 мм с острым концом.
Глубина закладывания вертикальных заземлителей — 0,5-0,6 метров от уровня планировочной отметки на земле, при этом электроды должны на 0,1-0,2 м выступать от дна траншеи. Между электродами необходимо выдерживать расстояние 2,5-3 м. Соединительные полосы между заземлителями вертикального типа и горизонтальные заземлители должны укладываться в траншеи на глубину 0,6-0,7 м от уровня планировочной отметки на земле.
Для соединения между собой заземлителей используется сварка внахлётстку, а сами места соединений покрываются битумом для предотвращения коррозии. Глубина траншеи составляет обычно 0,7 м, а ширина — 0,5 м. Внутренняя заземляющая сеть и внешний заземляющий контур устанавливается и собираются согласно рабочих чертежей проекта электроустановки. Заземляющие проводники должны заводиться в здание как минимум в двух местах.
Магистральные заземляющие проводники прокладываются по стенам на расстоянии 0,5-1 м от поверхностей, высота от уровня пола должна составлять 0,4-0,6 м. Расстояние между точками подключения необходимо выдерживать на уровне 0,6-1,0 м. Если в помещении отсутствуют химически активные среды и достаточно сухо, разрешается прокладка проводников заземления вплотную к стене.
Для закрепления полос к стенам используются дюбеля, пристреливаемые строительно-монтажным пистолетом. Также нередко используют закладные в стену детали, к которым можно приварить полосы заземления. Все части электроустановок, которые должны быть заземлены, необходимо подсоединять к заземляющим магистралям исключительно отдельными ответвителями.
После монтажа заземляющего контура необходимо провести измерение сопротивления заземления, что бы оно соответствовало нормам.
Глубина на которую должна быть вкопана железобетонная свая в качестве искусственного заземлителя
Заземление на фундамент в частном доме: плюсы, минусы и требования правил
Каким должен быть фундамент для заземления?
Для того, чтобы выполнять функцию заземляющего устройства, фундамент должен иметь :
Что говорят о заземлении на фундамент Правила?
Давайте заглянем в ПУЭ и посмотрим, что наши правила говорят о таком способе заземления.
И, для самых недоверчивых, ещё один пункт правил, который прямо указывает на фундамент, как на способ заземления ( 1.7.109 ):
В качестве естественных заземлителей могут быть использованы:
Как правильно присоединиться к фундаменту?
После этого, приварите к арматуре болт и присоедините к нему заземляющий провод, идущий в щиток (не меньше 10 квадрат для меди и 16 квадрат для алюминия), с помощью болтового наконечника. Для надёжности, смажьте наконечник токопроводящей смазкой и закрутите с дополнительной гайкой.
Можно ли использовать железобетонный фундамент в качестве заземления молниезащиты?
Современные здания, как правило, имеют в своем составе железобетонные конструкции и стоят на железобетонном фундаменте. Это обстоятельство значительно упрощает создание систем заземления. Действующие нормативные документы рекомендуют использовать в первую очередь естественные заземлители.
Применительно к заземлению электрооборудования до сих пор действует ГОСТ 12.1.030-81 «Электробезопасность. Защитное заземление. Зануление». Применительно к системам молниезащиты сложилась гораздо более сложная ситуация, поскольку в них заземление должно пропускать через себя большой электрический заряд за короткий промежуток времени.
Особенности заземления для систем молниезащиты
Основным документом, регламентирующим устройство молниезащиты, является СО 153-34.21.122-2003 “Инструкция по молниезащите зданий, сооружений и промышленных коммуникаций”. Но данный нормативный документ касается вопросов использования железобетонного фундамента в качестве естественного заземлителя очень кратко. В п. 3.2.3.3 говорится, что арматура должна отвечать требованиям п. 3.2.2.5, т.е. обеспечивать электрическую непрерывность соединения между элементами. Кроме этого, для предварительно напряженного бетона необходимо оценить воздействие протекающего электрического ток на предмет возможных механических воздействий. Остальные факторы (марка бетона, свойства почвы, защитное покрытие железобетонных конструкций) в Инструкции не рассматриваются, хотя они важны для оценки возможности использования фундамента в качестве заземления. Поэтому на практике приходится обращаться к документу РД 34.21.122-87 «Инструкция по устройству молниезащиты зданий и сооружений».
Согласно РД 34.21.122-87, п. 1.8, рекомендуется использовать естественные заземлители, кроме случаев, когда с целью защиты от агрессивных грунтов металлические элементы фундамента имеют эпоксидное или полимерное покрытие. Также запрещается использование фундамента для заземления системы молниезащиты при влажности грунта менее 3%. П. 1.8 Инструкции требует наличия непрерывного электрического соединения железобетонного фундамента с токоотводом по арматуре, причем соединение арматуры с закладными деталями должно быть выполнено сваркой.
Современный подход к заземлению для систем молниезащиты предусматривает нормирование не значения сопротивления растеканию, а типовых конструкций заземления. РД 34.21.122-87 рассматривает железобетонный фундамент в качестве одной из таких типовых конструкций. Согласно п. 2.2 Инструкции сказано, что для использования в качестве естественного заземления молниезащиты пригодны железобетонные фундаменты произвольной формы, имеющие площадь контакта с грунтом не менее 10 кв. м. Еще одно важное ограничение — фундамент не должны разрушаться при попадании молнии.
Агрессивные грунты и защита железобетона от их действия
В настоящее время вопросы защиты железобетонных конструкций от агрессивного воздействия грунтов регулируются в России межгосударственным стандартом ГОСТ 31384-2008 «Защита бетонных и железобетонных конструкций от коррозии. Общие требования». Согласно этому ГОСТ, агрессивность грунта определяется по глубине, на которую бетон разрушается, либо теряет защитные свойства относительно стальной арматуры, за 50 лет. Слабая степень агрессивности — менее 10 см, средняя — от 10 см до 20 см, высокая — более 20 см.
К первичным методам защиты относят изменения состава бетона, а также комплекс проектно-конструкторских решений, снижающих уровень коррозии. Бетон должен быть более плотным, обеспечивать более надежную защиту стальной арматуры, чем обычно. К вторичным мерам относят нанесение на железобетонные конструкции защитных покрытий, а также обработка антисептиком, если причиной коррозии является действие бактерий.
Вторичная защита железобетона подразумевает нанесение специального покрытия
Для слабоагрессивных грунтов применяют в основном первичные методы защиты, а вторичные — по мере необходимости. В среднеагрессивных грунтах обязательно применение как первичной, так и вторичной защиты, причем последняя ограничивает доступ веществ, вызывающих коррозию, к железобетону. Наконец, в грунтах с высокой степенью агрессивности применяются в обязательном порядке и первичные, и вторичные методы защиты, причем вторичные методы должны полностью изолировать железобетон от действия агрессивной среды.
Влияние типа бетона и свойств почвы на параметры заземления
Удельное электрическое сопротивление водоупорного бетона, используемого для первичной защиты от агрессивных грунтов, значительно выше, чем у обычного. Это связано с более плотной структурой, содержащий минимальное количество пор. Для водоупорного бетона удельное объемное электрическое сопротивления может быть вычислено на основании данных о коэффициенте водопоглощения и марке по водонепроницаемости. Также встречаются сорта бетона, устойчивые к действию агрессивных сред за счет введения в их состав специальных присадок. Объемное удельное сопротивление таких сортов бетона определяется путем проведения измерений на конкретных образцах.
Возможность использования железобетонного фундамента в качестве заземления системы молниезащиты в значительной степени зависит от свойств грунта. Как правило, если грунт обладает высокой степенью агрессивности, использование фундамента в качестве заземления также невозможно, поскольку ГОСТ требует обеспечить полную изоляцию железобетона от агрессивной среды.
А вот с грунтами малой и средней степенями агрессивности вполне можно работать. Тем не менее, они накладывают свои ограничения не только в связи с тем, что мероприятия по защите увеличивают сопротивление растеканию. Агрессивные грунты обычно богаты сульфатами и хлоридами. В результате электролиза выделяются хлор и сера, которые вносят дополнительный вклад в разрушение железобетона. Поэтому для грунтов слабой и средней агрессивности для оценки способности фундамента «работать» заземлением в качестве критерия берется плотность тока, стекающего с арматуры (о том, где взять предельно допустимые значения этого параметра, будет сказано далее).
Методики оценки
В России до сих пор действует ГОСТ 12.1.030-81. “Электробезопасность. Защитное заземление. Зануление.” У него есть справочное приложение “Оценка возможности использования железобетонных фундаментов промышленных зданий в качестве заземлителей”. Казалось бы, вот он, официальный нормативный документ, но… В качестве критерия пригодности взято сопротивление растекания. Этот критерий пригоден для расчета заземлений электроустановок, но в молниезащите он сейчас не применяется.
Выводы
Основные работы по созданию методик оценки применимости фундамента в качестве заземления были выполнены в нашей стране в 80-х — начале 90-х годов. С тех пор дальнейшее развитие данное научное направление получило лишь в РЖД для решения частных проблем по замене одного типа опор контактной сети на другой.
Заземляющие устройства, правила монтажа, глубина залегания, нормы установки
Защитное заземление представляет собой соединение с землёй металлических элементов электрических установок, на которые не подводится напряжение (корпуса измерительных трансформаторов, фланцы опорных изоляторов, кожухи трансформаторов, рукоятки приводов разъединителей и т.д.). Монтаж устройств заземления осуществляется в несколько этапов:
Для погружения вертикальных заземлителей на основе угловой стали либо отбракованных труб пользуются методом вдавливания или забивки. Если сталь круглая, то применяется вдавливание или ввёртывание. Для выполнения данных работ используют специальные приспособления и механизмы: копры для забивки в грунт, механизм ПЗД-12 для ввёртывания заземляющих электродов в грунт, приспособления к сверлилке для ввёртывания стержневых электродов в грунт.
Чаще всего, чтобы организовать заземление, применяются электрозаглубители, которые имеют редуктор и стандартную электросверлилку. Редуктор служит для изменения частоты вращения, вплоть до менее 100 об/мин, чтобы максимально увеличить на ввёртываемом электроде крутящий момент. В случае использования заглубителя, к концу заземлителя приваривается наконечник-забурник, позволяющий разрыхлить грунт, тем самым облегчая погружение электрода. В практике монтажа используются различные виды наконечников, но наиболее распространённым является наконечник в виде изогнутой по винтовой линии стальной полосы шириной 16 мм с острым концом.
Магистральные заземляющие проводники прокладываются по стенам на расстоянии 0,5-1 м от поверхностей, высота от уровня пола должна составлять 0,4-0,6 м. Расстояние между точками подключения необходимо выдерживать на уровне 0,6-1,0 м. Если в помещении отсутствуют химически активные среды и достаточно сухо, разрешается прокладка проводников заземления вплотную к стене.
Для закрепления полос к стенам используются дюбеля, пристреливаемые строительно-монтажным пистолетом. Также нередко используют закладные в стену детали, к которым можно приварить полосы заземления. Все части электроустановок, которые должны быть заземлены, необходимо подсоединять к заземляющим магистралям исключительно отдельными ответвителями.
После монтажа заземляющего контура необходимо провести измерение сопротивления заземления, что бы оно соответствовало нормам.
Назначение и характеристики искусственного заземлителя
Если коротко ответить на вопрос, что является определением понятия искусственного заземлителя, можно сказать, что это проводящий элемент, напрямую контактирующий с землей. Элементов может быть несколько, и контакт может осуществляться посредством промежуточной среды, проводящей электрический ток. От естественного заземления искусственное приспособление отличается тем, что сделано специально с применением расчетов и должной подготовки.
Основные функции
В электротехнике используются такие понятия, как заземление рабочее и защитное. Рабочее заземление применяется с целью обеспечения эффективной и бесперебойной работы установки. Молниеотводы, защищающие электроустановки от небесного электричества и воспламенений, также принадлежат к категории рабочих, поскольку в этом случае заземление никак не ограждает от поражений электрическим током.
Для защиты человека от электротока или удара молнией применяется защитное заземление. Другими словами, защитное заземление выполняется с целью снизить напряжение прикосновения до безопасного уровня. Это особенно важно на электрооборудовании с высоким, опасным для жизни напряжением.
Заземлитель является частью заземляющего устройства (заземления, ЗУ). Он плотно контактирует с грунтом. Один его конец подключен к электроприбору, благодаря чему происходит выравнивание потенциалов прибора и земли, и это защищает от удара током.
Согласно пункту 1.7.28 ПУЭ, заземлением является преднамеренно выполненное электрическое соединение точки электросети, электроустановки или оборудования с заземляющим устройством. Заземление подключают на всех электроустановках.
Расположение в грунте
Искусственное заземление применяется там, где нет возможности воспользоваться естественным заземлением, либо когда токовые нагрузки на естественные заземлители превышают допустимые нормы. Искусственные заземляющие устройства изготавливаются из стальных конструкций, но если в почвах превышена кислотность, или напротив, она подвержена ощелачиванию, применяются ЗУ из меди или оцинкованного металла.
По форме и структуре искусственный заземлитель похож на классический электрод. Чаще, это стержень, выполненный из стальной полосы или круглого прута. По типу расположения существуют 2 основных вида ЗУ. В горизонтальном типе заземлители укладывают по периметру фундамента на дне траншеи.
Вертикальные заземлители делают из стержней диаметром 12-15 мм и длиной до 4-5 метров. Их забивают в грунт на глубину 0,5-0,7 м.
Допускается расположение искусственных заземлителей под некоторым углом, и тогда понятия вертикальный или горизонтальный становится условным.
Наклонное расположение применяют в том случае, если стена строения расположена под углом к вертикали. Наклон не сказывается существенным образом на выполняемых функциях устройства.
В заземлении электроустановок с высоким напряжением используются так называемые сложные заземлители, в которых вертикальные элементы соединены с горизонтальными.
Когда устройство искусственных заземлителей оказывается на пахотной земле, все электроды должны размещаться на глубине не менее 1 метра. Это позволяет увеличить контакт с грунтом.
Какие требования предъявляются к искусственным заземлителям
Искусственные заземлители не подлежат окрашиванию, так как окраска играет роль изолятора и препятствует отведению электротока в землю. Таким образом, цвет заземлителя должен быть естественным, которым обладает применяемый в заземляющих устройствах, металл. Но места соединения проводников (сварочные швы) должны быть окрашены битумной краской, для предотвращения разрушения.
Нельзя размещать искусственные или применять естественные заземлители вблизи источников тепла, которые сушат землю. Для засушливых территорий существует особая железобетонная конструкция. Заземлитель делают в форме емкости, и помещают ниже поверхности земли. Емкость заполняют водой через люк. Таким образом, в заземлении принимает участие водораспределительная система. Стальные электроды соединены с выводом из емкости. Так обеспечивается оптимальное сопротивление.
Для создания искусственных заземлителей используются следующие материалы с указанными параметрами:
Только для временных электроустановок можно применять электроды с минимальными значениями. Чтобы заземляющее устройство служило 40-50 лет в благоприятных грунтовых условиях, достаточно выбрать стержни для него на 2-3 мм больше. Во влажных грунтах толщина и диаметры ЗУ должны быть в 2 раза выше минимального.
Из всех названых материалов наиболее оптимальным признано использование круглой арматуры, поскольку расход металла в этом случае снижается в 1,5 раза, уменьшается соответственно и себестоимость заземляющих устройств.
Коррозионная стойкость у круглой стали выше, чем у линейной, потому что у круглого электрода площадь соприкосновения с землей самая малая в сравнении с другими формами ИЗ. Еще одно преимущество состоит в том, что стержневые круглые электроды легче монтируются, экономится время, затрачиваемое на устройство ЗУ.
При заземлении мощных высоковольтных установок применяются контуры, состоящие из горизонтальных лучей, раскинувшихся на сотни метров и нескольких десятков вертикально установленных стержней. Чтобы искусственные заземлители не экранировали друг на друга, лучи разводят горизонтально в противоположные стороны. Если лучей 3, или 4, их располагают под углом 90 и 120 градусов соответственно.
Сопротивление искусственного заземлителя
Чтобы ЗУ эффективно выполняло свою задачу, оно должно иметь сопротивление растекания, не превышающее определенных значений. Данный параметр показывает, насколько хорошо устройство проводит электрический ток.
Для заземляемой электроустановки с напряжением 380В сопротивление искусственного заземлителя не должно превышать 30 Ом. Работающие под высоким напряжением, медицинская аппаратура, серверные блоки, системы видеонаблюдения заземляются с сопротивлением 0,5-1 Ом.
Расчет для искусственных заземлителей производится с целью определить, какое количество вертикальных и горизонтальных токопроводящих стержней должно быть смонтировано для получения оптимального сопротивления.
Что такое естественный заземлитель
Для безопасной работы с различными электрическими установками требуется использовать заземление. Естественное заземление является одной из распространенных мер. В качестве него можно использовать стальную арматуру, являющуюся частью бетонной конструкции. Кроме того, применимы другие металлические устройства, расположенные в грунте. Подходят водопроводные коммуникации, кабели, реже для заземлителя могут быть использованы надземные конструкции, такие, как металлические трубы или рельсы.
Преимущества
Естественные заземлители не делают специально, а применяют то, что есть под рукой. Для того чтобы использоваться металлические конструкции в роли заземлителей, они должны полностью соответствовать требованиям, предъявляемым правилами для электроустановок.
Естественный заземлитель можно сочетать с искусственным. Такая схема применяется, когда требуется отвести большие токи. Искусственный заземлитель будет направлять ток к естественному, по которому он уйдет в грунт.
Естественные контуры применяются достаточно часто без искусственных, сами по себе. Благодаря такому подходу обеспечивается не только безопасная работа, но и происходит значительная экономия материалов, расходуемых на обустройство заземляющего контура.
Так как конструкция уже существует, не требуется монтировать что-то еще, благодаря этому можно значительно сузить временные рамки, отведенные на монтаж, использовать простое, недорогое приспособление.
Как происходит соединение
Вне зависимости от того, какой естественный заземляющий контур используется (железобетонная конструкция, рельсы, металлические трубы, арматура), важно при соединении элементов заземления создать непрерывную электрическую цепь. Она должна проходить по металлическим поверхностям. При использовании железобетонных изделий происходит более сложная подготовка, так как требуется предусмотреть металлические закладки. Если используется здание, такие закладки нужно делать на каждом этаже.
Закладки являются элементами, благодаря которым происходит соединение электрического оборудования с цепью. Сюда же можно подключить любое технологическое оборудование, находящееся внутри или снаружи здания, и таким образом заземлить его. Многие бетонные конструкции оснащены ушками из арматуры, имеют в качестве соединительных деталей сварочные швы или болты.
Такие выступы можно использовать для создания цепи без использования дополнительных металлических деталей. При отсутствии подобных соединений монтажники пользуются гибкими перемычками, которые можно приварить к металлическим конструкциям.
Внимание! Перемычки не должны быть в сечении меньше 100 мм2.
Что нельзя использовать
При монтаже рабочего заземления нельзя применять некоторые железобетонные конструкции, поскольку они могут не соответствовать требованиям безопасности. Например, если фундамент сборный, он не подходит в качестве естественного заземлителя, так как вряд ли удастся создать непрерывную цепь.
В этом случае лучше использовать арматуру блоков, расположенных близко друг к другу. Только после такой операции можно будет преступать к сооружению естественного заземления.
При невозможности по каким-либо причинам создать такой контур лучше отказаться от использования естественного заземлителя и создать искусственную цепь.
Запрещено применять в качестве заземлителя стоковые трубы (канализацию), поскольку на стыках у них слабый электрический контакт.
Железобетонные стойки на подстанциях можно использовать только в том случае, если они были сделаны с использованием специального бетона (электротехнического).
Использование фундамента
При создании контура необходимо знать, как происходит соединение железобетонных элементов здания. Например, фундамент чаще всего соединяется с остальными элементами путем сваривания арматуры. Если фундамент выполнен из свай, соединение арматуры фундаментных блоков с ними или свай с ростверком можно осуществить при помощи электросварки. Стоит обратить внимание на то, что такой способ не подходит для соединения каркасов из металла и пространственных колонн. Их соединение выполняют при помощи точечной сварки.
В качестве заземлителя не всегда можно использовать фундамент из железобетона. Применять такой контур можно лишь в случаях, когда влажность почвы не ниже 3 %. При меньшей влажности сопротивление фундамента будет слишком высоким, что не позволит применить его для устройства контура.
Фундамент подходит в качестве заземляющего контура, если находится в слабоагрессивной среде. Например, к такому воздействию относится наличие грунтовых вод с низкой жесткостью. Хорошо подходят фундаменты, не имеющие гидроизоляции, либо поверхность которых защищена битумом. При этом нельзя применять фундамент из железобетона, находящийся в непосредственном контакте с агрессивной средой. Такое воздействие приведет к коррозии его элементов. Существуют конструкции, в которые включена напрягаемая арматура, они также не подходят для создания естественного заземляющего контура.
При внимательном осмотре здания можно решить, подходит его фундамент или другие элементы для создания заземления или нет. Стоит отметить, что большинство бетонных конструкций таким требования отвечают, поэтому никакой необходимости создавать искусственное заземление не возникает. Благодаря этой особенности бетонных сооружений не придется производить большие затраты на провода. Все они будут находиться внутри здания, что позволит сэкономить на их длине, и это значительно снизит расходы на материалы.
Другие варианты
Существуют и другие естественные заземлители. Чтобы изучить подходящие варианты, можно воспользоваться ПУЭ п.109 раздела 1.7. В нем говорится том, что вполне подходит применение трубопровода из стали. Основным условием является наличие внутри трубопровода негорючей жидкости. Кроме этого, в качестве естественного заземлителя можно взять металлическую обсадную трубу скважин.
Для ЛЭП, как заземлители, применяют железобетонные подножники, поскольку при контакте с грунтом они хорошо увлажняются.
Таким образом, используя естественные заземлители, можно значительно сэкономить время и деньги, однако требуется учитывать большое количество факторов, способных повлиять на безопасность. Конструкции не только должны образовывать единую цепь, но и оказывать сопротивление, не превышающее допустимого параметра.
Характеристики вертикального заземлителя и его монтаж
Для того чтобы обеспечить электротехническую безопасность в доме или на предприятии, необходимо установить заземляющий контур. Земля, является отличным проводником, который заряжен отрицательно, и если корпус мощных электрических приборов соединить с этим проводником, посредством вертикального заземления, то можно не опасаться поражения электрическим током, даже в случае утечки фазного напряжения.
Чтобы осуществить монтаж вертикального заземления, которое бы отвечало всем правилам и стандартам, необходимо ознакомиться с основными принципами правильной установки этого метода электротехнической защиты.
Материалы для вертикального заземления
Для того чтобы осуществить соединение стержней между между собой, необходимо приобрести арматуру, которая приваривается к каждому заземлителю из круглой стали, и вводится в дом для подключения к электрическим приборам и устройствам.
Цена стального стержня невелика, а при наличии электросварочного аппарата, все работы можно выполнить самостоятельно. Стоимость расходных материалов при проведении подобных работ, также не будет слишком большой, поэтому заземление, которое выполнено с использование стальных стержней и арматуры, не потребует значительных финансовых вложений.
Расчёт параметров
Прежде чем приступить к выполнению монтажных работ, необходимо осуществить правильный расчёт параметров заземления. Площадь соприкосновения вертикального заземлителя с породой напрямую зависит от сопротивления грунта.
Если монтаж заземления осуществляется в северных районах страны, где грунт промерзает на значительную глубину, площадь соприкосновения проводника с грунтом должна быть более значительной, чем на юге, где грунт не промерзает на глубину более 0,5 метра.
При промерзании грунта его сопротивление резко увеличивается, что негативно сказывается на эффективности заземляющего контура. Поэтому, для обеспечения надлежащего уровня электротехнической защиты в условиях вечной мерзлоты, могут применяться монтажные технологии, отличающиеся от общепринятых.
Если земля полностью промёрзла, то необходимо осуществить бурение на значительную глубину, установить металлические электроды и засыпать отверстие ранее удалённым грунтом.
От породы, в которой необходимо осуществить заземление, также зависит площадь соприкосновения грунта с грунтом и удельное сопротивление вещества.
Если осуществляется монтаж заземления в чернозёме и торфе, то для обеспечения нормального заземления, достаточно погружения электрода на глубину 1,5 метра.
Монтаж оборудования
После того, как будет определён тип грунта, где планируется установка заземления, можно приступать к установке стержней.
Если грунт достаточно каменист, можно применить отбойным молоток со специальной насадкой для установки вертикальных стержней.
После установки всех вертикальных заземлителей их соединяют между собой горизонтально расположенными кусками арматуры.
Диаметр горизонтально расположенных стержней должен составлять не менее 10 см, иначе не будет достигнуто показание сопротивления на необходимом уровне.
Чтобы обеспечить беспрепятственное истечение электрического тока по проводнику следует обеспечить по всему периметру электрического контура, сопротивление вертикальных заземлителей, равное 4 Ом. Если не удаётся добиться данного идеального показателя сопротивления, допустимо отклонение этого значения до 10 Ом, без ухудшения защитных свойств вертикального заземления.
Если сразу после установки электротехнической защиты её вводят в эксплуатацию, то места, где расположены вертикальные стержни, необходимо полить значительным количеством воды. Таким образом удаётся восстановить структуру грунта, который будет максимально эффективно передавать электрический потенциал от металлических стержней земле.
Самостоятельная установка
Вертикальные электроды заземления, можно установить самостоятельно. При установке необходимо знать состав грунта, чтобы определить примерную глубину установки рабочих электродов. Для установки заземления потребуется приобрести сварочный аппарат и необходимое количество электродов для того чтобы сварить вертикальные и горизонтальные заземлители.
Для соединения металлов не рекомендуется использовать различные зажимы и другие резьбовые соединения. Со временем такие места могут значительно ухудшить проводимость участка электрической цепи, что негативно скажется на эффективности заземляющего контура. Если грунт не промерзает в зимнее время на глубину более 0,5 метра, и не является скальным или каменистым, то можно использовать круглый стержень длиной не более 1,5 метров.
При неблагоприятных условиях для установки заземления, глубина размещения стержней должна составлять не менее 3 метров, а расстояние между ними может быть уменьшено до 4 метров. Не рекомендуется далее уменьшать расстояние между электродами, иначе общее сопротивление заземляющей установки может значительно увеличиться, за счёт эффекта экранирования.
Если нет желания заниматься монтажом заземления самостоятельно, то можно обратиться в специализированные фирмы, которые в кратчайшие сроки установят вертикальное заземление на прилегающем к дому участке. Несмотря на то, что такие услуги будут стоить денег, экономия времени может быть значительна. И если этот ресурс, является очень важным, то лучше доверить работу профессионалам.
Заземление по правилам: главное, что нужно знать
Правило 1: Заземлители должны быть достаточно толстыми
сталь оцинкованная: диаметр 16 мм или поперечное сечение 90 кв. мм ;
сталь нержавеющая: диаметр 16 мм или поперечное сечение 90 кв. мм;
Правило 2: Заземлители должны всегда быть во влажной почве
Согласно ГОСТ (Приложение D.1):
А также, по пункту 542.2.4:
При выборе типа и глубины установки заземляющих электродов должны быть учтены возможности механического повреждения и минимизации воздействия высыхания или промерзания грунта.
Правило 3: Следите за хорошим контактом между заземлением и проводом!
542.3.2 Соединение заземляющего проводника с заземлителем должно быть надежным и с соответствующими электрическими характеристиками. Соединение может быть выполнено с помощью сварки, опрессовки, соединительного зажима или другим механическим соединителем.
















