Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный [1] пробный заряд, помещенный в данную точку поля, к величине этого заряда :
.
Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном [2] множителе).
Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон.
Содержание
Напряжённость электрического поля в классической электродинамике
Приведем краткий обзор основных контекстов классической электродинамики в отношении напряженности электрического поля.
Сила, с которой действует электромагнитное поле на заряженные частицы
Полная сила, с которой электромагнитное поле (включающее вообще говоря электрическую и магнитную составляющие) действует на заряженную частицу, выражается формулой силы Лоренца:
Как видим, эта формула полностью согласуется с определением напряженности электрического поля, данном в начале статьи, но является более общей, т.к. включает в себя также действие на заряженную частицу (если та движется) со стороны магнитного поля.
Остальные формулы, применяемые для расчета электромагнитных сил (такие, как, например, формула силы Ампера) можно считать следствиями [5] фундаментальной формулы силы Лоренца, частными случаями ее применения итп.
Однако для того, чтобы эта формула была применена (даже в самых простых случаях, таких, как расчет силы взаимодействия двух точечных зарядов), необходимо знать (уметь рассчитывать) и чему посвящены следующие параграфы.
Уравнения Максвелла
Достаточным вместе с формулой силы Лоренца теоретическим фундаментом классической электродинамики являются уравнения электромагнитного поля, называемые уравнениями Максвелла. Их стандартная традиционная форма представляет собой четыре уравнения, в три из которых входит вектор напряженности электрического поля:
Здесь — плотность заряда, — плотность тока, — универсальные константы (уравнения здесь записаны в единицах СИ).
«Материальные уравнения»
Такими дополнительными формулами или уравнениями (обычно не точными, а приближенными, зачастую всего лишь эмпирическими), которые не входят непосредственно в область электродинамики, но поневоле используются в ней ради решения конкретных практических задач, называемыми «материальными уравнениями», являются, в частности:
Связь с потенциалами
Связь напряженности электрического поля с потенциалами в общем случае такова:
где — скалярный и векторный потенциалы. Приведем здесь для полноты картины и соответствующее выражение для вектора магнитной индукции:
В частном случае стационарных (не меняющихся со временем) полей, первое уравнение упрощается до:
Это выражение для связи электростатического поля с электростатическим потенциалом.
Электростатика
Важным с практической и с теоретической точек зрения частным случаем в электродинамике является тот случай, когда заряженные тела неподвижны (например, если исследуется состояние равновесия) или скорость их движения достаточно мала чтобы можно было приближенно воспользоваться теми способами расчета, которые справедливы для неподвижных тел. Этим частным случаем занимается раздел электродинамики, называемый электростатикой.
Как мы уже заметили выше, напряженность электрического поля в этом случае выражается через скалярный потенциал как
Уравнения поля (уравнения Максвелла) при этом также сильно упрощаются (уравнения с магнитным полем можно исключить, а в уравнение с дивергенцией можно подставить ) и сводятся к уравнению Пуассона:
Учитывая линейность этих уравнений, а следовательно применимость к ним принципа суперпозиции, достаточно найти поле одного точечного единичного заряда, чтобы потом найти потенциал или напряженность поля, создаваемого любым распределением зарядов (суммируя решения для точечного заряда).
Теорема Гаусса
Очень полезной в электростатике оказывается теорема Гаусса, содержание которой сводится к интегральной форме единственного нетривиального для электростатики уравнения Максвелла:
Эта теорема дает крайне простой и удобный способ расчета напряженности электрического поля в случае, когда источники имеют достаточно высокую симметрию, а именно сферическую, цилиндрическую или зеркальную+трансляционную. В частности, таким способом легко находится поле точечного заряда, сферы, цилиндра, плоскости.
Напряжённость электрического поля точечного заряда
В единицах СИ
Для точечного заряда в электростатике верен закона Кулона
. .
Исторически закон Кулона был открыт первым, хотя с теоретической точки зрения уравнения Максвелла более фундаментальны. С этой точки зрения он является их следствием. Получить этот результат проще всего исходя из теоремы Гаусса, учитывая сферическую симметрию задачи: выбрать поверхность S в виде сферы с центром в точечном заряде, учесть, что направление будет очевидно радиальным, а модуль этого вектора одинаков везде на выбранной сфере (так что E можно вынести за знак интеграла), и тогда, учитывая формулу для площади сферы радиуса r: , имеем:
откуда сразу получаем ответ для E.
Ответ для получается тогда интегрированием E:
Для системы СГС
Формулы и их вывод аналогичны, отличие от СИ лишь в константах.
Напряженность электрического поля произвольного распределения зарядов
По принципу суперпозиции для напряженности поля совокупности дискретных источников имеем:
Для непрерывного распределения аналогично:
Системы единиц
В системе СГС напряжённость электрического поля измеряется в СГСЭ единицах, в системе СИ — в ньютонах на кулон или в вольтах на метр (русское В/м, международное V/m).
Напряженность электрического поля — понятие, формула, единица измерения и значение
Заряженные тела действуют друг на друга посредством электрического поля, которое они создают в окружающем пространстве. Физическая величина называется напряженностью электрического поля в конкретной точке пространства и характеризуется векторной направленностью. Напряжение зависит от силы действия на заряженную частицу и размера потенциала.
Общее понятие
Электрическое поле представляет собой определенный вид материи, возникающий вокруг частиц или тел, у которых присутствует электрический заряд. В свободной форме поле существует при реформировании магнитного фона, например, при действии электромагнитных волн. Область воздействия не наблюдается непосредственно, но проявляется в результате влияния силы на тела с зарядами.
Электромагнитный фон рассматривается в форме математической модели, которая описывает размер напряженности в заданной точке участка. Поле не является вариантом вещества и относится к вопросам из метафизической области.
Классическая наука в вопросах рассмотрения объектов, которые по размеру больше атома, руководствуется теорией взаимодействия на электрическом участке. Поле считается отдельной составляющей общего электромагнитного фона. В теории квантовой электродинамики оно рассматривается в качестве элемента слабого взаимодействия.
Присутствие поля заключается в измерении числа свободных носителей при действии электростатического фона на плоскость проводящей среды. Этот эффект применяется при работе полевых радиоприемников. Поле воздействует силой на стационарные (относительно зрителя) заряженные частицы или тела. Если предмет является неподвижным в исследуемой сфере, то он не ускоряется при действии силы. Подвижные заряженные элементы ускоряются под влиянием энергетического и магнитного поля.
Напряженностью поля называется векторная размерность, которая определяется отношением действующей силы на положительно заряженную частицу, к величине отдельного потенциала. Вектор напряженности электрического поля совпадает в разных точках внутри исследуемого шара с направлением приложения силы. Величина измеряется в вольтах на метр (в/м) в соответствии с Международной СЕ.
Зависимость между двумя зарядами
Напряженность поля по аналогии с механическим действием характеризуется не только численной величиной, но и зависит от пространственного направления, т. е. представляет собой векторную константу. Если заряд одной частицы принять за единицу, то получится сила, которая действует на единицу потенциала.
Направленность точечного заряда с положительным значением идет по линии радиуса. Напряженность в разноудаленных точках от проводника всегда отличается и уменьшается при удалении в обратно пропорциональной зависимости к расстоянию в квадрате. Для расчета суммирующего показателя интенсивности значение напряженностей складываются, так как силы направляются одна к другой под углом. Такое вычисление происходит по закону параллелограмма. Этим же способом рассчитывается модуль напряженности в разных точках сферы при одном или нескольких зарядах.
Положительный заряд электричества отталкивается по прямой линии, продолжающей направление радиуса, если он находится в поле с плюсовым потенциалом. Вырисовывается совокупность радиальных линий, которые направляются в разные стороны от шара при перемещении заряда по различным точкам области и после отметок двигательных траекторий. Полученные воображаемые прямые являются силовыми электрическими линиями, по которым передвигается положительно заряженная частица с отсутствием инерции.
В электрически заряженном поле обнаруживается множество силовых линий. С их помощью графически показывается величина напряженности и направление действия электрического потенциала в конкретной точке поля. Иногда используется прием проведения через каждый см 2 площади, перпендикулярной к силовым линиям на заданном участке пространства, такого количества линий, чтобы их суммарное значение соответствовало напряженности. Величина интенсивности в этой части поля меняет показатель в зависимости от густоты потока силовых векторов.
Однородное поле
Электростатическое поле называется равномерным или однородным, если имеет одинаковые показатели напряжения в различных пространственных областях по направлению и величине. Примером служит поле между большими заряженными пластинами, которые располагаются параллельно одна к другой.
Для изображения применяются прямые линии:
Одноименные потенциалы отталкиваются при взаимодействии, поэтому электрический заряд может существовать только снаружи проводниковой плоскости. Объем электричества, который действует на единицу площади тела, называется поверхностной плотностью.
Величина показателя зависит:
Электрический заряд раздается равномерно при использовании круглых проводников большой длины или сферических фигур правильной формы. В этом случае поверхностная плотность потенциала будет одинаковой на всех участках площади тела. Если тело отличается неправильной геометрией, то заряд делится с нарушением равномерности. Больший показатель плотности определяется на вступающих частях и уменьшается внутри углублений и впадин.
Самый большой показатель поверхностной насыщенности проявляется на острых кромках и ребрах. Части потенциала на таких экстремальных участках отталкиваются и стремятся сбросить заряды с поверхности в проблемных областях. На острие скапливается значительная порция заряда, поэтому образовывается электрическое поле большой силы.
Возникает эффект конденсатора. Под его действием окружающий воздух или иной диэлектрик ионизируется и становится проводником. В этом случае наблюдается «стекание» потенциала с острия.
При изготовлении проводников тщательно убирают все острые выступы и концы, чтобы избежать избыточной электризации в случае применения высокого напряжения.
Электрическая напряженность в быту
Вначале создается электрический потенциал для получения поля. Любой диэлектрик натирается о шерсть, волосы, используется, например, пластиковая ручка или эбонитовая палочка. На поверхности предмета создается потенциал, а вокруг возникает электрическое поле. Ручка с зарядом притягивает мелкие кусочки бумаги. Если подобрать правильное сочетание материала и размера предмета, то в темноте наблюдаются небольшие искры, которые появляются вследствие разрядов электричества.
Электростатический фон часто появляется рядом с экраном телевизора при включении или выключении оборудования. Это поле ощущается в виде поднятых волосков на теле. Избыточный потенциал, полученный проводником извне, сосредотачивается на поверхности предмета, как становится ясно из проведенных опытов. Перемещение заряженных частиц к внешней оболочке свидетельствует о появлении электростатического поля внутри проводника, что дает импульс к переброске.
Существует ошибочное мнение, что электрический фон в заряженном теле исчезает после окончания дислокации электронов, а поле действует определенный промежуток времени. Если бы точка зрения была правильной, то избыточный потенциал мог находиться в условиях равновесия и способствовал бы беспорядочному и хаотичному движению молекул. Такое явление никогда не наблюдается в проводниках и заряженных телах.
Расчет показателей
Напряженность поля, которое возникает под действием системы зарядов в искомой точке исследуемой области, равняется векторному результату аналогичных показателей всех полей, создаваемых отдельными потенциалами.
Формула напряженности электрического поля выглядит как Е= F / q, где параметры обозначаются буквами:
Направление вектора Е должно совпадать с курсом действия силы, влияющей на положительный заряд, и находится в противоположном русле к давлению, которое оказывается на отрицательную частицу.
Это свойство означает, что действие поля происходит по принципу суперпозиции, который гласит:
Иногда принцип принимает другие формулировки, которые по смыслу представляют собой эквивалентную теорию. В соответствии с ней, для нахождения энергии взаимного смещения в системе множества частиц берется сумма активности парных сочетаний между всеми реальными парами зарядов. Уравнения, которые участвуют в описании поведения системы, являются линейными формулами по количеству микрочастиц.
Взаимодействие потенциалов
Элементарные микрочастицы, которые носят название электрических зарядов, создают в собственном окружении электромагнитный фон. Поле переносит силовые связи между отдельными частицами. Электростатическое поле контактирует с носителями заряда и представляет собой носитель информации в современных системах телевещания, радио.
Частицы взаимодействуют между собой и переносятся полем в пространственном континууме с определенной конечной скоростью. Электрический потенциал (заряд) является численной характеристикой в определенной области поля и принимает положительное или отрицательное значение. При этом величина силового действия между элементами, которое осуществляется зарядами, является прямо пропорциональной размеру потенциала. Определение направления силовых линий индукции, идущих со стороны электрического поля, зависит от знака действующего заряда.
Электрический потенциал определенной направленности присутствует в частице в течение всего времени ее существования. В результате происходит отождествление микроэлемента с его зарядом. Для характеристики используется система диполь, применяемая для описания поля или учета распространения колебаний электромагнитных линий вдали от нулевого источника с зарядом, разделенным в пространстве.
Потенциал любого проводника является кратным модулю элементарного заряда частицы. В природе создается одинаковое количество положительных и отрицательных электронов, при этом электрический потенциал молекул и атомов принимается равным нулю. Заряды ионов и катионов в каждом участке кристаллической решетки компенсируются между собой.
Возникновение изолированных систем с определенной полярностью связывается не с появлением новых потенциальных частиц, а с их разделением в некоторых условиях, например, при трении. Электростатическое поле возникает в случае неподвижности зарядов и является идеализированным понятием.
Точечные резервы
Потенциалом называется заряженный предмет или отдельная частица, размеры которой признаются ничтожными по сравнению с дистанциями до других зарядов в искомой системе. Точечный заряд идеализируется так же, как понятие материальной точки в механической теории. Заряд, который помещается в исследуемое тело для получения характеристик и выявления свойств, носит название пробного.
Такой потенциал является довольно малым, чтобы влиять на положение основных зарядов и искажать условия измеряемого поля. Этот элемент служит индикатором электромагнитного фона. Заряд в замкнутом электрическом поле никогда не изменится, если через поверхность не будут поступать заряженные элементарные частицы (закон Фарадея).
Если заряженная система 1 отдает потенциал системе 2, то размер получаемого заряда всегда равен величине отдаваемого количества. Заряд тела является симметричным относительно перемены порядка отсчета и не зависит от ускорения и начальной скорости.
Напряженность электрического поля — векторная характеристика поля, сила, действующая на единичный покоящийся в данной системе отсчета электрический заряд. Напряженность определяется по формуле:
где — напряженность поля; — сила, действующая на помещенный в данную точку поля заряд q. Направление вектора совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд. Единицей напряженности в СИ является вольт на метр (В/м).
Напряженность поля точечного заряда.
Согласно закону Кулона, точечный заряд q0действует на другой заряд с силой, равной
Модуль напряженности поля точечного заряда q0 на расстоянии r от него равен:
,
Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд: