найди на каком рисунке проведена высота треугольника
Геометрия. 7 класс
Биссектриса треугольника
Укажите рисунок, на котором изображена биссектриса треугольника.
Высота треугольника
На рисунке изображён треугольник ABА1, ∠1 = ∠2. Можно ли назвать отрезок BH высотой треугольника?
На рисунке изображён ∆MOC: MP – высота и биссектриса треугольника MOC. ∠OMP = 25°
Поставьте в соответствие каждому углу его градусную меру.
Стороны треугольника
На рисунке изображён ∆АBС, в нём СD и AK – медианы.
AB = 6 см, BC = 7 см, AC = 1,3AB.
Заполните пропуски в таблице.
Медианы треугольника
Выберите рисунки, на которых проведены медианы.
Треугольник
Выделите цветом правильный ответ.
На рисунке изображён треугольник ABC. AD – высота ∆ABC. Какие углы равны 90°?
Термины
Вставьте пропущенные слова
треугольника – это перпендикуляр, проведённый из треугольника к прямой, содержащей сторону.
Сторона треугольника
Введите с клавиатуры результат вычислений.
На рисунке изображён ∆QRP, ОR – медиана ∆QRP, при этом OP = 5 см. Чему равна сторона QP?
Треугольник
Подчеркните правильный ответ.
Медиана АК ∆АВС продолжена за сторону ВС на отрезок КМ равный АК. Точка М соединяется с точкой С так, что образуется треугольник МКС. Какому треугольнику он равен, исходя из 1 признака равенства треугольников?
Периметр треугольника
BM – медиана ∆ABC – равна 8 см, AC = 10 см, BC = 1,2 ВМ. Найдите периметр ∆BMC.
Выберите правильный ответ из выпадающего списка.
Треугольник
Выберите правильный ответ.
На рисунке изображён ∆QRP, в нем RO – высота и медиана треугольника QRP, сторона QR = RP = 1,4QO. Укажите, чему равна сторона RP, если сторона QP = 12 см.
Элементы треугольника
Выберите все правильные варианты.
В треугольнике ABC проведены биссектрисы AD и BM, которые пересекаются в точке O. Найдите углы треугольника ABO, если ∠BAC = 50°, ∠ABC = 80°, а сумма углов треугольника ABO равна 180°.
Задача
ВH – высота ∆ABC. Из вершины угла AHB проведены два луча – HK и HP. Угол AHK в 2 раза больше ∠KHP, а ∠PHB на 10° больше ∠KHP. Найдите каждый угол, если лучи HK и HP лежат внутри угла АHB. Впишите с клавиатуры результат вычислений.
Биссектрисы
Выделите цветом правильный ответ.
В треугольнике ODC ∠COD = 90°. Найдите ∠MOB, если OA – биссектриса угла ∠COM, при этом ∠COA = 20°, а BO – биссектриса ∠MOD.
Высота треугольника (ЕГЭ 2022)
Там, где есть высота, есть и прямой угол.
А значит, и прямоугольный треугольник, который поможет тебе решить массу задач!
И простые подобия, и «хитрые подобия с косинусом», и другие свойства прямоугольных треугольников!
И самое главное – не нужно ничего запоминать.
Научись выводить и никогда не ошибёшься, сможешь всегда себя проверить и решить любую задачу!
Все в этой статье. Читай и смотри видео.
Высота треугольника — коротко о главном
Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне (прямой, которая эту сторону содержит).
Основанием высоты называют ту точку, в которой высота пересекает противоположную сторону (или её продолжение).
Три высоты любого треугольника пересекаются в одной точке.
Высоты треугольника обратно пропорциональны сторонам, на которые они опущены: \( \displaystyle A<
_>:B< _>:C< _ >=\frac<1> :\frac<1> :\frac<1> \).
Способ 1. Через сторону и угол треугольника: \( \displaystyle A<
Способ 3. Через сторону и площадь треугольника: \( \displaystyle A<
Способ 4. Через стороны треугольника и радиус описанной окружности: \( \displaystyle A<
Читай далее! Здесь не все…
Высота треугольника — подробнее
Высота – линия, проведённая из вершины треугольника перпендикулярно противоположной стороне (прямой, которая эту сторону содержит).
На этом рисунке \( \displaystyle BH\) – высота.
Но иногда высота (в отличие от биссектрисы и медианы) ведёт себя, как непослушный ребенок – «выбегает» из треугольника. Это бывает в тупоугольном треугольнике.
И тогда получается так:
В общем, не нужно пугаться, если основание высоты оказалось не на стороне треугольника, а «за» треугольником, на продолжении стороны.
Как же решать задачи, в которых участвует высота?
Нужно стремиться применить какие-нибудь знания о прямоугольном треугольнике – ведь где высота – там и прямой угол.
Но попадаются задачи и похитрее, при решении которых лучше обладать дополнительными знаниями заранее, а не выводить их «с нуля». Сейчас мы обсудим некоторые из них.
Но для начала решим простенькую задачку на высоту в тупоугольном треугольнике:
В треугольнике \( \displaystyle ABC\) с тупым углом \( \displaystyle C\) проведена высота \( \displaystyle BH\). Найти \( \displaystyle AC\), если \( AB=2\sqrt<10>\), \( BC=\sqrt<13>\), \( BH=2\).
Смотри: из-за того, что угол \( C\) – тупой, высота \( BH\) опустилась на продолжение стороны \( AC\), а не на саму сторону.
Теперь давай увидим во всём этом два прямоугольных треугольника.
Смотри их целых два:
Применяем теорему Пифагора к треугольнику \( BCH\):
А теперь теорема Пифагора для \( \Delta ABH\):
Теперь осталось только заметить, что \( AC=AH-CH=6-3=3\).
А теперь давай вернемся к нашим высотам!
В треугольнике проведено две высоты
Первый «неожиданный факт»:
Почему бы это? Да очень просто! У них общий угол \( \displaystyle B\) и оба – прямоугольные. Значит, подобны по двум углам.
Второй «неожиданный» факт:
Здесь тоже подобие по двум углам: \( \angle 1=\angle 2\) (как вертикальные) и по прямому углу.
Третий, по-настоящему неожиданный факт:
Вот это уже интереснее, правда? Давай разбираться, почему так.
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
В треугольнике проведены три высоты
Как и для медиан, и для биссектрис, для высот треугольника верно следующее утверждение:
В любом треугольнике три высоты или их продолжения пересекаются в одной точке.
Доказывать это утверждение мы здесь, пожалуй, не будем.
Давай просто нарисуем, чтобы понять, как это бывает «высоты или их продолжения».
1. Треугольник остроугольный – тогда пересекаются сами высоты:
2. Треугольник тупоугольный – тогда пересекаются продолжения высот:
Что же полезного мы ещё не обсудили?
Угол между высотами
Давай узнаем, вдруг угол между высотами можно как–то выразить через углы треугольника? Давай рассмотрим остроугольный треугольник.
Итак, нам хотелось бы найти \( \displaystyle \angle \varphi \).
Смотрим на \( \displaystyle \Delta AHC\). Замечаем, что наш \( \displaystyle \angle \varphi \) – внешний угол в этом треугольнике.
Значит, \( \angle \varphi =\angle 1+\angle 2\).
Чему же равны \( \displaystyle \angle 1\) и \( \displaystyle \angle 2\)?
Но что же это такое? Ведь сумма угла углов треугольника — \( 180<>^\circ \)! Значит, \( \angle \varphi =\angle B\).
Итак, что получилось?
Читать далее…
Чтобы пользоваться учебником ЮКлэва без ограничений, зарегистрируйтесь один раз:
Остроугольный треугольник и высота
Вернёмся–ка к остроугольному треугольнику. Отметим на рисунке равные углы:
Что видим теперь? Ещё подобные треугольники!
Как от двух линий вообще могут получиться столько подобных треугольников?!
Видишь, какое богатство? И всё это может быть использовано в задачах!
Ну вот, теперь ты узнал что-то новенькое про высоты треугольника.
Теперь пробуй применять в задачах всё это – и соображение о том, что высота образует прямоугольный треугольник, и простые подобия прямоугольных треугольников, получающихся при пересечении двух высот, и подобие похитрее — которое с косинусом, и то, что угол между высотами равен углу между сторонами…
Главное, ты не старался просто запоминать все эти факты, а осознай, что их можно очень просто вывести.
И тогда, если ты будешь точно знать, например, что две проведённые высоты приносят кучу бонусов в виде всяких подобий, то ты непременно и сам получишь все эти бонусы, а заодно – решение своей задачи!
Бонус: Вебинары из нашего курса подготовки к ЕГЭ по математике
ЕГЭ №6 Все о равнобедренном треугольнике
Очень часто все «проблемы» с решением задач на равнобедренный треугольник решаются построением высоты.
Очень хороший вебинар, чтобы закрепить решением задач то, что вы изучили в этой статье о высоте.
Вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ. Научимся решать и «обычные» треугольники.
ЕГЭ №6 Все о прямоугольном треугольнике
Важнейшая тема — прямоугольный треугольник — свойства, теорема Пифагора, тригонометрия.
Абсолютное большинство задач геометрии сводятся к прямоугольным треугольникам. Поэтому знать нужно как «Отче наш».
И уметь решать задачи — чем мы займемся на этом вебинаре.
Наши курсы по подготовке к ЕГЭ по математике, информатике и физике
К ЕГЭ можно подготовиться абсолютно бесплатно. У нас на сайте полно качественных материалов. Но вы должны знать что вы делаете.
Если у вас с этим сложности, приходите к нам.
И если вам нужен действительно высокий балл, приходите на наши курсы:
Мы качественно готовим к ЕГЭ даже тех, у кого «нет способностей».
Твоя очередь!
Ты знаешь очень много о высоте треугольника. И вот, что нужно сделать дальше. Практикуйся! Ведь я уверен, что с каждой задачей ты будешь все увереннее применять свои знания!
Высота треугольника – не просто перпендикуляр, длину которого мы используем для нахождения площади, верно? Это кое-что покруче 🙂
А теперь мы хотим узнать твое мнение!
Помогла ли тебе эта статья? Понравилась ли она тебе и все ли было понятно?
Напиши внизу в комментариях!
А если остались вопросы, задай их! Мы непременно ответим тебе!
Удачи на экзаменах!
Добавить комментарий Отменить ответ
Один комментарий
Некоторые комментарии прошлых лет к этой статье:
Дарья Сулейманова
15 января 2018
Сидела и готовилась к зачёту по геометрии около двух часов, заходила на множество разных сайтов. И только на вашем сайте всё написано понятным языком, без заумных терминов. Спасибо!
Александр (админ)
15 января 2018
Дарья, спасибо! Всей нашей команде очень приятно это слышать. Мы, консультанты, убеждали математиков использовать «человеческий» язык. И они справились очень хорошо. В результате получилось то, что всем нравится. Мы каждый день получаем благодарности. Еще раз спасибо и удачи на зачете!
Олеся
06 апреля 2018
Готовится с внуком к ОГЭ. Школу закончила 45 лет назад. Учили в то время просто отлично. Многое помню хорошо, но некоторые нюансы забылись. Ваш сайт очень помог. Все лаконично, по существу и без лишних заумных оборотов. Скачала ла себе на телефон. В свободное время просматриваю. С удовольствием решаю задачи. Спасибо Вам.
Александр (админ)
06 апреля 2018
Олеся, спасибо за такой отзыв и удачи Вашему внуку на всех экзаменах. А сайт я лично попросил математиков написать «человеческим языком» ) Судя по отзывам, они справились.
Ольга
15 февраля 2019
А как бы еще доказать подобие треугольников HcHHa и АНС Можно без окружностей
Дмитрий
10 февраля 2020
Скажите, прав ли я. (Задание «Угол между высотами») Что не может угол Фи быть = углу В Так как, угол В это 180 минус угол А+С И угол Н это 180 минус угол А+С Значит В и Н равны, следовательно угол Фи это 180 — Н или минус В, что априори не может быть равным не В не Н.
Алексей Шевчук
13 февраля 2020
Дмитрий, угол H — это угол в треугольнике AHC, но в этом треугольнике углы A и С не равны углам A и C треугольника ABC. Чтобы не возникало такой путаницы, важно (а на экзаменах даже обязательно) писать углы полностью (тремя вершинами): ∠AHC = 180 — (∠HAC + ∠HCA); ∠ABC = 180 — (∠BAC + ∠BCA) — и теперь сразу видно, что это не одно и то же.
Андрей
08 апреля 2020
Очень доходчивый язык учебника. Как в старой советской школе. Я просто в восторге
Александр (админ)
08 апреля 2020
Андрей, спасибо большое! Очень приятно слышать! Сравнение лестное! ))
задание:определите, на каком рисунке проведена высота треугольника.
Ответы 2
последний по сколько там Кут 90 градусов
т.к. лодка была в пути с 8-00 до 20-00, при этом останавливалась на 2 часа, то в движении она пребывала всего 12-2=10 часов.
Получаем, что всего в движении лодка была:
второй корень не подходит, т.к. скорость не может быть отриательной.
ответ: скорость лодки 4км/ч.
графиком первой функции будет парабола. Графиком второй функции будет прямая.
Т.к. в условии сказано, что у них только одна общая точка, то значит что прямая является касательной к параболе (т.к. если это не касательная, то она пересекет обе ветви параболы).
Т.к. прямая является касательной к параболе, то должно выполнятся условие:
решаем систему уравниений, из которой находим х (одна из координат точки касания) и р.
получаем уравнение параболы
подставляя значение x в любое из уравнений, находим у:
Т.о. точка касания имеет координаты (1$4)
График во вложении
т.к. трапеция равноб., то уголВ=уголС
уголВ= уголМВС + угол МВА
уголС= уголМСВ + угол МCD= угол МВС + угол МCD
Получаем, что угол МCD = угол МВА.
Тест по геометрии на тему «Медианы, биссектрисы и высоты треугольника»
Ищем педагогов в команду «Инфоурок»
Медианы, биссектрисы и высоты треугольника
: В треугольнике провели две медианы. Сколько всего треугольников изображено на рисунке?
Выберите один из 4 вариантов ответа:
Выберите один из 4 вариантов ответа:
Выберите один из 4 вариантов ответа:
Может ли точка пересечения высот лежать вне треугольника?
Выберите один из 2 вариантов ответа:
Сколько высот имеет любой треугольник?
Выберите один из 4 вариантов ответа:
Выберите один из 4 вариантов ответа:
Выберите один из 4 вариантов ответа:
1) (1 б.) Верный ответ: «медианой».
2) (1 б.) Верный ответ: «высотой».
3) (1 б.) Верный ответ: «Биссектрисой треугольника».
4) (1 б.) Верные ответы: 3;
5) (1 б.) Верные ответы: 2;
6) (1 б.) Верные ответы: 3;
7) (1 б.) Верные ответы: 1;
8) (1 б.) Верные ответы: 4;
9) (1 б.) Верные ответы: 3;
10) (1 б.) Верные ответы: 3;
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Номер материала: ДБ-968018
Международная дистанционная олимпиада Осень 2021
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
«Спутник» объявили словом года в России
Время чтения: 2 минуты
Роспотребнадзор продлил действие санитарных правил для школ
Время чтения: 1 минута
День преподавателя высшей школы будет отмечаться 19 ноября
Время чтения: 1 минута
В школе в Пермском крае произошла стрельба
Время чтения: 1 минута
Школьники Свердловской области с 8 ноября перейдут на дистанционку
Время чтения: 0 минут
В Приамурье начнут пускать на занятия только привитых студентов
Время чтения: 0 минут
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.