ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΡΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y kx
ΠΡΠ°ΡΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π΅Π³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΡΠΎΡΠΌΡΠ»Ρ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Β«yΒ» ΠΎΡ Β«xΒ», Π³Π΄Π΅ Β«xΒ» ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Β«yΒ» β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π·Π½Π°ΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠ³Π΄Π° Π²ΠΌΠ΅ΡΡΠΎ Β«xΒ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΎΠ½ΡΡΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΈΠ΄Π° y = kx + b, Π³Π΄Π΅ Ρ β Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ, k, b β Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΈΡΠ»Π°. ΠΡΠΈ ΡΡΠΎΠΌ k β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, b β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° b β Π΄Π»ΠΈΠ½Π° ΠΎΡΡΠ΅Π·ΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΡΠ΅ΠΊΠ°Π΅Ρ ΠΏΡΡΠΌΠ°Ρ ΠΏΠΎ ΠΎΡΠΈ OY, ΡΡΠΈΡΠ°Ρ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° k β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠΈ OX, ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ.
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ , ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ.
ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠΎΡΠΌΠ»ΡΡΡ Π² Π²ΠΈΠ΄Π΅ ΡΠ°Π±Π»ΠΈΡΡ:
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ. ΠΠ»Ρ Π΅Π³ΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π΄Π²ΡΡ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π·Π° ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ, ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ β Π·Π° ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Ρ ΠΎΡΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠΊΠ²Π΅Π½Π½ΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ Β«kΒ» ΠΈ Β«bΒ» β ΡΡΠΎ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ° ΠΈΡ ΠΌΠ΅ΡΡΠ΅ ΠΌΠΎΠ³ΡΡ ΡΡΠΎΡΡΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π°: ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅, ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΠ»ΠΈ Π΄ΡΠΎΠ±ΠΈ.
ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Β«kΒ» ΠΈ Β«bΒ».
Π€ΡΠ½ΠΊΡΠΈΡ | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β«kΒ» | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β«bΒ» |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = βx + 3 | k = β1 | b = 3 |
y = 1/8x β 1 | k = 1/8 | b = β1 |
y = 0,2x | k = 0,2 | b = 0 |
ΠΠΎΠΆΠ΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΡΡΡ, ΡΡΠΎ Π² ΡΡΠ½ΠΊΡΠΈΠΈ Β«y = 0,2xΒ» Π½Π΅Ρ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Β«bΒ», Π½ΠΎ ΡΡΠΎ Π½Π΅ ΡΠ°ΠΊ. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ½ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. Π§ΡΠΎΠ±Ρ Π½Π΅ ΠΏΠΎΠ΄Π΄Π°Π²Π°ΡΡΡΡ ΡΠΎΠΌΠ½Π΅Π½ΠΈΡΠΌ, Π½ΡΠΆΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ: Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠΏΠ° Β«y = kx + bΒ» Π΅ΡΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Β«kΒ» ΠΈ Β«bΒ».
ΠΡΠ΅ Π½Π΅ ΡΡΡΠ°Π»ΠΈ? ΠΠ·ΡΡΠ°ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΡ Π²Π΅ΡΠ΅Π»Π΅Π΅ Ρ ΠΎΠΏΡΡΠ½ΡΠΌ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Π΅ΠΌ Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² Skysmart!
Π‘Π²ΠΎΠΉΡΡΠ²Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ Π΅ΡΡΡ Π°ΠΊΡΠΈΠΎΠΌΠ°: ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΠ΅ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΡΡΠΌΡΡ ΠΈ ΠΏΡΠΈΡΠΎΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½Ρ. ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΡΡΠΎΠΉ Π°ΠΊΡΠΈΠΎΠΌΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ: ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° Β«Ρ = kx + bΒ», Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π²ΡΠ΅Π³ΠΎ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ. Π Π΄Π»Ρ ΡΡΠΎΠ³ΠΎ Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΄Π²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ , ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΈΡ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ y.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = 1 /3x + 2, ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡΡ Ρ = 0 ΠΈ Ρ = 3, ΡΠΎΠ³Π΄Π° ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ Π±ΡΠ΄ΡΡ ΡΠ°Π²Π½Ρ Ρ = 2 ΠΈ Ρ = 3. ΠΠΎΠ»ΡΡΠΈΠΌ ΡΠΎΡΠΊΠΈ Π (0; 2) ΠΈ Π (3; 3). Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈΡ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ°ΠΊΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊ:
Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π·Π° Π½Π°ΠΊΠ»ΠΎΠ½ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌ ΡΠΈΡΡΠ½ΠΎΠΊ. ΠΡΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ Π²ΠΏΡΠ°Π²ΠΎ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ. ΠΡΠΈΡΠ΅ΠΌ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ k, ΡΠ΅ΠΌ ΠΊΡΡΡΠ΅ ΠΈΠ΄Π΅Ρ ΠΏΡΡΠΌΠ°Ρ.
Π ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ b = 3, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠΎΡΠΊΠ΅ (0; 3).
Π ΡΡΠΎΡ ΡΠ°Π· Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ Π²Π»Π΅Π²ΠΎ. Π§Π΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ k, ΡΠ΅ΠΌ ΠΊΡΡΡΠ΅ ΠΈΠ΄Π΅Ρ ΠΏΡΡΠΌΠ°Ρ.
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ b ΡΠ°Π²Π΅Π½ ΡΡΠ΅ΠΌ, ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠΎΡΠΊΠ΅ (0; 3).
Π’Π΅ΠΏΠ΅ΡΡ Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ k ΡΠ°Π²Π½Ρ. ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠ΅ ΠΏΡΡΠΌΡΠ΅.
ΠΡΠΈ ΡΡΠΎΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ b ΡΠ°Π·Π»ΠΈΡΠ½Ρ, ΠΈ ΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΎΡΠΊΠ°Ρ :
ΠΡΡΠΌΡΠ΅ Π±ΡΠ΄ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Ρ Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ.
ΠΠΎΠ΄ΡΡΠΎΠΆΠΈΠΌ. ΠΡΠ»ΠΈ ΠΌΡ Π·Π½Π°Π΅ΠΌ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² k ΠΈ b, ΡΠΎ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ, ΠΊΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b.
ΠΡΠ»ΠΈ k 0, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
ΠΡΠ»ΠΈ k > 0 ΠΈ b > 0, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
0 ΠΈ b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Π’ΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ
Π§ΡΠΎΠ±Ρ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ ΠΈ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΡΡΠΆΠ΄Π°ΡΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° Π²ΡΡΠ΅. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ!
ΠΡΠΈΠΌΠ΅Ρ 2. ΠΠ°ΠΏΠΈΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ A (1; 1); B (2; 4).
ΠΡΠ°ΡΠΈΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π΅Π³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΡΠΎΡΠΌΡΠ»Ρ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Β«yΒ» ΠΎΡ Β«xΒ», Π³Π΄Π΅ Β«xΒ» ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Β«yΒ» β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π·Π½Π°ΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠ³Π΄Π° Π²ΠΌΠ΅ΡΡΠΎ Β«xΒ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π°ΠΉΡΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΎΠ½ΡΡΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΈΠ΄Π° y = kx + b, Π³Π΄Π΅ Ρ β Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ, k, b β Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΈΡΠ»Π°. ΠΡΠΈ ΡΡΠΎΠΌ k β ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ, b β ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° b β Π΄Π»ΠΈΠ½Π° ΠΎΡΡΠ΅Π·ΠΊΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΡΠ΅ΠΊΠ°Π΅Ρ ΠΏΡΡΠΌΠ°Ρ ΠΏΠΎ ΠΎΡΠΈ OY, ΡΡΠΈΡΠ°Ρ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠΌΡΡΠ» ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° k β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ ΠΊ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΎΡΠΈ OX, ΡΡΠΈΡΠ°Π΅ΡΡΡ ΠΏΡΠΎΡΠΈΠ² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΡΡΡΠ΅Π»ΠΊΠΈ.
ΠΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ , ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Ρ.
ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠΎΡΠΌΠ»ΡΡΡ Π² Π²ΠΈΠ΄Π΅ ΡΠ°Π±Π»ΠΈΡΡ:
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ. ΠΠ»Ρ Π΅Π³ΠΎ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π΄Π²ΡΡ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ΄ΠΎΠ²Π»Π΅ΡΠ²ΠΎΡΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π£Π³Π»ΠΎΠ²ΠΎΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π·Π° ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΏΡΡΠΌΠΎΠΉ, ΡΠ²ΠΎΠ±ΠΎΠ΄Π½ΡΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ β Π·Π° ΡΠΎΡΠΊΡ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° Ρ ΠΎΡΡΡ ΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΡΠΊΠ²Π΅Π½Π½ΡΠ΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»ΠΈ Β«kΒ» ΠΈ Β«bΒ» β ΡΡΠΎ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ° ΠΈΡ ΠΌΠ΅ΡΡΠ΅ ΠΌΠΎΠ³ΡΡ ΡΡΠΎΡΡΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π°: ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠ΅, ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΈΠ»ΠΈ Π΄ΡΠΎΠ±ΠΈ.
ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΠ΅ΠΌΡ ΡΠ°Π²Π½Ρ ΡΠΈΡΠ»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Β«kΒ» ΠΈ Β«bΒ».
Π€ΡΠ½ΠΊΡΠΈΡ | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β«kΒ» | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Β«bΒ» |
---|---|---|
y = 2x + 8 | k = 2 | b = 8 |
y = βx + 3 | k = β1 | b = 3 |
y = 1/8x β 1 | k = 1/8 | b = β1 |
y = 0,2x | k = 0,2 | b = 0 |
ΠΠΎΠΆΠ΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΡΡΡ, ΡΡΠΎ Π² ΡΡΠ½ΠΊΡΠΈΠΈ Β«y = 0,2xΒ» Π½Π΅Ρ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° Β«bΒ», Π½ΠΎ ΡΡΠΎ Π½Π΅ ΡΠ°ΠΊ. Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΎΠ½ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ. Π§ΡΠΎΠ±Ρ Π½Π΅ ΠΏΠΎΠ΄Π΄Π°Π²Π°ΡΡΡΡ ΡΠΎΠΌΠ½Π΅Π½ΠΈΡΠΌ, Π½ΡΠΆΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ: Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΈΠΏΠ° Β«y = kx + bΒ» Π΅ΡΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Β«kΒ» ΠΈ Β«bΒ».
ΠΡΠ΅ Π½Π΅ ΡΡΡΠ°Π»ΠΈ? ΠΠ·ΡΡΠ°ΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΡ Π²Π΅ΡΠ΅Π»Π΅Π΅ Ρ ΠΎΠΏΡΡΠ½ΡΠΌ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Π΅ΠΌ Π½Π° ΠΊΡΡΡΠ°Ρ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π² Skysmart!
Π‘Π²ΠΎΠΉΡΡΠ²Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Π Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΠΈ Π΅ΡΡΡ Π°ΠΊΡΠΈΠΎΠΌΠ°: ΡΠ΅ΡΠ΅Π· Π»ΡΠ±ΡΠ΅ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΡΡΠΌΡΡ ΠΈ ΠΏΡΠΈΡΠΎΠΌ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½Ρ. ΠΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΡΡΠΎΠΉ Π°ΠΊΡΠΈΠΎΠΌΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ: ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° Β«Ρ = kx + bΒ», Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π²ΡΠ΅Π³ΠΎ Π΄Π²Π΅ ΡΠΎΡΠΊΠΈ. Π Π΄Π»Ρ ΡΡΠΎΠ³ΠΎ Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΄Π²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ , ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ ΠΈΡ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ y.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = 1 /3x + 2, ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡΡ Ρ = 0 ΠΈ Ρ = 3, ΡΠΎΠ³Π΄Π° ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΡΡΠΈΡ ΡΠΎΡΠ΅ΠΊ Π±ΡΠ΄ΡΡ ΡΠ°Π²Π½Ρ Ρ = 2 ΠΈ Ρ = 3. ΠΠΎΠ»ΡΡΠΈΠΌ ΡΠΎΡΠΊΠΈ Π (0; 2) ΠΈ Π (3; 3). Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΈΡ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΠ°ΠΊΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊ:
Π ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ Π·Π° Π½Π°ΠΊΠ»ΠΎΠ½ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΡΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌ ΡΠΈΡΡΠ½ΠΎΠΊ. ΠΡΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ Π²ΠΏΡΠ°Π²ΠΎ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k Π±ΠΎΠ»ΡΡΠ΅ Π½ΡΠ»Ρ. ΠΡΠΈΡΠ΅ΠΌ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ k, ΡΠ΅ΠΌ ΠΊΡΡΡΠ΅ ΠΈΠ΄Π΅Ρ ΠΏΡΡΠΌΠ°Ρ.
Π ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ b = 3, ΠΏΠΎΡΡΠΎΠΌΡ Π²ΡΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠΎΡΠΊΠ΅ (0; 3).
Π ΡΡΠΎΡ ΡΠ°Π· Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ½ΠΊΡΠΈΡΡ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ k ΠΌΠ΅Π½ΡΡΠ΅ Π½ΡΠ»Ρ, ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π°ΠΊΠ»ΠΎΠ½Π΅Π½Ρ Π²Π»Π΅Π²ΠΎ. Π§Π΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ k, ΡΠ΅ΠΌ ΠΊΡΡΡΠ΅ ΠΈΠ΄Π΅Ρ ΠΏΡΡΠΌΠ°Ρ.
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ b ΡΠ°Π²Π΅Π½ ΡΡΠ΅ΠΌ, ΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠΎΡΠΊΠ΅ (0; 3).
Π’Π΅ΠΏΠ΅ΡΡ Π²ΠΎ Π²ΡΠ΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ k ΡΠ°Π²Π½Ρ. ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΡΠΈ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠ΅ ΠΏΡΡΠΌΡΠ΅.
ΠΡΠΈ ΡΡΠΎΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ b ΡΠ°Π·Π»ΠΈΡΠ½Ρ, ΠΈ ΡΡΠΈ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°ΡΡ ΠΎΡΡ OY Π² ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΠΎΡΠΊΠ°Ρ :
ΠΡΡΠΌΡΠ΅ Π±ΡΠ΄ΡΡ ΠΏΠ°ΡΠ°Π»Π»Π΅Π»ΡΠ½ΡΠΌΠΈ ΡΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Ρ Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ ΡΠ³Π»ΠΎΠ²ΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ.
ΠΠΎΠ΄ΡΡΠΎΠΆΠΈΠΌ. ΠΡΠ»ΠΈ ΠΌΡ Π·Π½Π°Π΅ΠΌ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² k ΠΈ b, ΡΠΎ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ, ΠΊΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b.
ΠΡΠ»ΠΈ k 0, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>
ΠΡΠ»ΠΈ k > 0 ΠΈ b > 0, ΡΠΎ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
0 ΠΈ b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>
Π’ΠΎΡΠΊΠΈ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = kx + b Ρ ΠΎΡΡΠΌΠΈ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ:
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ Π½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ
Π§ΡΠΎΠ±Ρ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΈ ΠΈ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΡΡΠΆΠ΄Π°ΡΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° Π²ΡΡΠ΅. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ!
ΠΡΠΈΠΌΠ΅Ρ 2. ΠΠ°ΠΏΠΈΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΠΎΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΊΠΈ A (1; 1); B (2; 4).