способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

Аналоговый и дискретный способ кодирования

способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

Лекция 7

Тема: «Дискретное представление информации»

План

1. Кодирование и декодирование информации в компьютере

2. Аналоговый и дискретный способы кодирования

3. Кодирование изображений

3.1. Кодирование растровых изображений

3.2. Кодирование векторных изображений

3.3. Графические форматы файлов

4. Двоичное кодирование звука

5. Представление видеоинформации

Кодирование и декодирование информации в компьютере

Вся информация, которую обрабатывает компьютер, должна быть представлена двоичным кодом с помощью двух цифр 0 и 1. Эти два символа принято называть двоичными цифрами или битами. С помощью 0 и 1 можно закодировать любое сообщение. Это явилось причиной того, что в компьютере обязательно должно быть организованно два важных процесса: кодирование и декодирование.

Кодирование – преобразование входной информации в форму, воспринимаемую компьютером, т.е. двоичный код.

Декодирование – преобразование данных из двоичного кода в форму, понятную человеку.

С точки зрения технической реализации использование двоичной системы счисления для кодирования информации оказалось намного более простым, чем применение других способов. Действительно, удобно кодировать информацию в виде последовательности нулей и единиц, если представить эти значения как два возможных устойчивых состояния электронного элемента:

0 – отсутствие электрического сигнала;

1 – наличие электрического сигнала.

Эти состояния легко различать. Недостаток двоичного кодирования – длинные коды. Но в технике легче иметь дело с большим количеством простых элементов, чем с небольшим числом сложных.

Вам приходится постоянно сталкиваться с устройством, которое может находится только в двух устойчивых состояниях: включено/выключено. Конечно же, это хорошо знакомый всем выключатель. А вот придумать выключатель, который мог бы устойчиво и быстро переключаться в любое из 10 состояний, оказалось невозможным. В результате после ряда неудачных попыток разработчики пришли к выводу о невозможности построения компьютера на основе десятичной системы счисления. И в основу представления чисел в компьютере была положена именно двоичная система счисления.

Способы кодирования и декодирования информации в компьютере, в первую очередь, зависят от вида информации, а именно, что должно кодироваться: числа, текст, графические изображения или звук.

Аналоговый и дискретный способ кодирования

Человек способен воспринимать и хранить информацию в форме образов (зрительных, звуковых, осязательных, вкусовых и обонятельных). Зрительные образы могут быть сохранены в виде изображений (рисунков, фотографий и так далее), а звуковые — зафиксированы на пластинках, магнитных лентах, лазерных дисках и так далее.

способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называютсяИнформация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме.

При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно.

При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

Приведем пример аналогового и дискретного представления информации. Положение тела на наклонной плоскости и на лестнице задается значениями координат X и У. При движении тела по наклонной плоскости его координаты могут принимать бесконечное множество непрерывно изменяющихся значений из определенного диапазона, а при движении по лестнице — только определенный набор значений, причем меняющихся скачкообразно.

Примером аналогового представления графической информации может служить, например, живописное полотно, цвет которого изменяется непрерывно, а дискретного — изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета. Примером аналогового хранения звуковой информации является виниловая пластинка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).

способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации, то есть разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигнала на отдельные элементы. В процессе дискретизации производится кодирование, то есть присвоение каждому элементу конкретного значения в форме кода.

Дискретизация – это преобразование непрерывных изображений и звука в набор дискретных значений в форме кодов.

Источник

Способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

Электронные облака

Лекции

Рабочие материалы

Тесты по темам

Template tips

Задачи

Логика вычислительной техники и программирования

Лекция «Кодирование информации»

Формы представления информации

Многообразие источников и потребителей информации привело к существованию различных форм ее представления: текстовой, графической, числовой, звуковой и др. При использовании компьютерной техники все это многообразие можно свести к формам, перечисленным ниже.

Текстовая информация основана на использовании цифр, знаков и т.д. Информация заложена не только в этих символах, но и в их сочетании. Так, слова «кот» и «ток» состоят из одинаковых букв, но содержат различную информацию. Благодаря взаимосвязи символов и письменному отображению речи человека, текстовая информация чрезвычайно удобна и широко используется.

Графическая информация является самой емкой и самой сложной формой, в которой могут быть представлены виды природы, фотографии, чертежи, схемы, рисунки, картины, кадры фильмов и т.д.

Числовая информация представляется в виде чисел, определяющих количество чего-либо.

Вычислительная техника оперирует только с дискретными сигналами. Поэтому, далее, мы рассмотрим вопросы, связанные с тем, как перечисленные выше формы представления информации могут быть выражены дискретными сообщениями.

Знаки, наборы знаков и алфавиты

При написании текста знаки письма, которые носят название графем, следуют друг за другом. Примерами графем являются буква, слово, предложение. Устная речь строится по такому же принципу. Она разбита на отдельные элементарные блоки звуков, называемые фонемами. Для воспроизведения фонем письменно существуют специальные соглашения – транскрипции. В музыке сообщения представляют собой последовательность отдельных звуков или их сочетаний (аккордов), которые могут быть записаны с помощью специальных обозначений – нот.

Рассматривая и другие примеры, можно прийти к выводу, что в общем случае: любое дискретное сообщение может быть записано в виде последовательности определенных знаков.

Знак – это элемент некоторого конечного множества отличимых друг от друга объектов – набора знаков.

Набор знаков, в котором определен линейный порядок знаков, называется алфавитом.

Коды и кодирование дискретных сообщений

С помощью отдельных знаков, наборов знаков и алфавитов (наборов знаков с линейным порядком) можно записывать дискретные сообщения. Поскольку аналоговая информация непрерывна, записать ее с помощью вышеперечисленных понятий нельзя.

способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

Решение задач по кодированию

Разберём в качестве примеров несколько задач:

Используя шифр «Цезаря» зашифруйте слово МИР

Решение: Этот шифр реализует следующее преобразование текста: каждая буква исходного текста заменяется третей после неё буквой в алфавите, который считается написанным по кругу:

Ответ: код слова МИР – ПМУ

Расшифруйте слово ПМУ, закодированное с помощью шифра Цезаря

Решение: Выполняем обратное действие: каждая буква исходного текста заменяется третей, стоящей перед ней буквой в алфавите, который считается написанным по кругу:

Ответ: декодируем ПМУ и получаем МИР

Закодируйте слова шифром «Винжера» (ключевое слово ВАЗА) слово МИР

Это шифр представляет шифр «Цезаря» с переменной величиной сдвига. Величину сдвига задают ключевым словом. Например, слово ВАЗА означает следующую последовательность сдвигов букв исходного текста: 3 1 9 1 3 1 9 1 и т.д.

Т.к.
В – 3-я буква алфавита
А – 1-я буква алфавита
З – 9-ая буква алфавита
А – 1-я буква алфавита

Итак, кодируем слово МИР:

Источник

Способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

Электронные облака

Лекции

Рабочие материалы

Тесты по темам

Template tips

Задачи

Логика вычислительной техники и программирования

Лекция «Аналоговый и дискретный способы представления изображений и звука»

Аналоговое и дискретное предоставление графической информации

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме. При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно. При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации, то есть разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигнала на отдельные элементы. В процессе дискретизации производится кодирование, то есть присвоение каждому элементу конкретного значения в форме кода.

Звук в памяти компьютера

Основные понятия: аудиоадаптер, частота дискретизации, разрядность регистра, звуковой файл.

Аудиоадаптер (звуковая плата) – специальное устройство, подключаемое к компьютеру, предназначенное для преобразования электрических колебаний звуковой частоты в числовой двоичный код при вводе звука и для обратного преобразования (из числового кода в электрические колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом измеряет амплитуду электрического тока и заносит в реги стр двоичный код полученной величины. Затем полученный код из регистра переписывается в оперативную память компьютера. Качество компьютерного звука определяется характеристиками аудиоадаптера: частотой дискретизации и разрядностью.

Разрядность регистра – число бит в регистре аудиоадаптера. Разрядность определяет точность измерения входного сигнала. Чем больше разрядность, тем меньше погрешность каждого отдельного преобразования величины электрического сигнала в число и обратно. Если разрядность равна 8(16), то при измерении входного сигнала может быть получено 2 8 =256 (2 16 =65536) различных значений. Очевидно, 16-разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный.

Звуковой файл – файл, хранящий звуковую информацию в числовой двоичной форме. Как правило, информация в звуковых файлах подвергается сжатию.

Примеры решенных задач.

Пример №1.
Определить размер (в байтах) цифрового аудиофайла, время звучания которого составляет 10 секунд при частоте дискретизации 22,05 кГц и разрешении 8 бит. Файл сжатию не подвержен.

Решение.
Формула для расчета размера (в байтах) цифрового аудиофайла (монофоническое звучание): (частота дискретизации в Гц)*(время записи в секундах)*(разрешение в битах)/8.

Таким образом файл вычисляется так: 22050*10*8/8 = 220500 байт.

Задания для самостоятельной работы

№1. Определить объем памяти для хранения цифрового аудиофайла, время звучания которого составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 бит.

№2. В распоряжении пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой аудиофайл с длительностью звучания 1 минута. Какой должна быть частота дискретизации и разрядность?

№3. Объем свободной памяти на диске – 5,25 Мб, разрядность звучания платы – 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц?

№4. Одна минута цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы – 8. С какой частотой дискретизации записан звук?

№5. Две минуты записи цифрового аудиофайла занимает на диске 5,1 Мб. Частота дискретизации – 22050 Гц. Какова разрядность аудиоадаптера? №6. Объем свободой памяти на диске – 0,01 Гб, разрядность звуковой платы – 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой дискретизации 44100 Гц?

Представление графической информации.

Растровое представление.

Основные понятия: Компьютерная графика, пиксель, растр, разрешающая способность экрана, видеоинформация, видеопамять, графический файл, битовая глубина, страница видеопамяти, код цвета пикселя, графический примитив, система графических координат.

Компьютерная графика – раздел информатики, предметом которого является работа на компьютере с графическими изображениями (рисунками, чертежами, фотографиями, видеокадрами и пр.).

Пиксель – наименьший элемент изображения на экране (точка на экране).

Растр – прямоугольная сетка пикселей на экране.

Разрешающая способность экрана – размер сетки растра, задаваемого в виде произведения M*N, где M – число точек по горизонтали, N – число точек по вертикали (число строк).

Видеоинформация – информация об изображении, воспроизводимом на экране компьютера, хранящаяся в компьютерной памяти.

Видеопамять – оперативная память, хранящая видеоинформацию во время ее воспроизведения в изображение на экране.

Графический файл – файл, хранящий информацию о графическом изображении.

Число цветов, воспроизводимых на экране дисплея (K), и число бит, отводимых в видеопамяти под каждый пиксель (N), связаны формулой: K=2 N

Величину N называют битовой глубиной.

Страница – раздел видеопамяти, вмещающий информацию об одном образе экрана (одной «картинке» на экране). В видеопамяти могут размещаться одновременно несколько страниц.

Все многообразие красок на экране получается путем смешивания трех базовых цветов: красного, синего и зеленого. Каждый пиксель на экране состоит из трех близко расположенных элементов, светящихся этими цветами. Цветные дисплеи, использующие такой принцип, называются RGB (Red-Green-Blue)-мониторами.

Код цвета пикселя содержит информацию о доле каждого базового цвета.
Если все три составляющие имеют одинаковую интенсивность (яркость), то из их сочетаний можно получить 8 различных цветов (2 3 ). Следующая таблица показывает кодировку 8-цветной палитры с помощью трехразрядного двоичного кода. В ней наличие базового цвета обозначено единицей, а отсутствие нулем.

КЗСЦвет
000Черный
001Синий
010Зеленый
011Голубой
100Красный
101Розовый
110Коричневый
111Белый

Шестнадцатицветная палитра получается при использовании 4-разрядной кодировки пикселя: к трем битам базовых цветов добавляется один бит интенсивности. Этот бит управляет яркостью всех трех цветов одновременно. Например, если в 8-цветной палитре код 100 обозначает красный цвет, то в 16-цветной палитре: 0100 – красный, 1100 – ярко-красный цвет; 0110 – коричневый, 1110 – ярко-коричневый (желтый).

Большое количество цветов получается при раздельном управлении интенсивностью базовых цветов. Причем интенсивность может иметь более двух уровней, если для кодирования каждого из базовых цветов выделять более одного бита.

При использовании битовой глубины 8 бит/пиксель количество цветов: 2 8 =256. Биты такого кода распределены следующим образом: КККЗЗСС.

Это значит, что под красную и зеленую компоненты выделяется по 3 бита, под синюю – 2 бита. Следовательно, красная и зеленая компоненты имеют по 2 3 =8 уровней яркости, а синяя – 4 уровня.

Векторное представление.

При векторном подходе изображение рассматривается как совокупность простых элементов: прямых линий, дуг, окружностей, эллипсов, прямоугольников, закрасок и пр., которые называются графическими примитивами. Графическая информация – это данные, однозначно определяющие все графические примитивы, составляющие рисунок.

Положение и форма графических примитивов задаются в системе графических координат, связанных с экраном. Обычно начало координат расположено в верхнем левом углу экрана. Сетка пикселей совпадает с координатной сеткой. Горизонтальная ось X направлена слева направо; вертикальная ось Y – сверху вниз.

Отрезок прямой линии однозначно определяется указанием координат его концов; окружность – координатами центра и радиусом; многогранник – координатами его углов, закрашенная область – граничной линией и цветом закраски и пр.

Нарисовать линию от текущей позиции в позицию (X1, Y1).

Нарисовать линию с координатами начала X1, Y1 и координатами конца X2, Y2. Текущая позиция не устанавливается.

Нарисовать окружность: X, Y – координаты центра, R – длина радиуса в шагах растровой сетки.

Эллипс X1, Y1, X2, Y2

Нарисовать эллипс, ограниченный прямоугольником; (X1, Y1) – координаты левого верхнего, а (X2, Y2) – правого нижнего угла этого прямоугольника.

Прямоугольник X1, Y1, X2, Y2

Нарисовать прямоугольник; (X1, Y1) – координаты левого верхнего угла, а (X2, Y2) – правого нижнего угла этого прямоугольника.

Цвет рисования ЦВЕТ

Установить текущий цвет рисования.

Цвет закраски ЦВЕТ

Установить текущий цвет закраски.

Закрасить X, Y, ЦВЕТ ГРАНИЦЫ

Закрасить произвольную замкнутую фигуру; X, Y – координаты любой точки внутри замкнутой фигуры, ЦВЕТ ГРАНИЦЫ – цвет граничной линии.

Примеры решенных задач.

Пример №1.
Для формирования цвета используются 256 оттенков красного, 256 оттенков зеленого и 256 оттенков синего. Какое количество цветов может быть отображено на экране в этом случае?

Пример №2.
На экране с разрешающей способностью 640*200 высвечиваются только двухцветные изображения. Какой минимальный объем видеопамяти необходим для хранения изображения?

Решение.
Так как битовая глубина двухцветного изображения равна 1, а видеопамять, как минимум, должна вмещать одну страницу изображения, то объем видеопамяти равен: 640*200*1=128000 бит =16000 байт.

Пример №3.
Какой объем видеопамяти необходимы для хранения четырех страниц изображения, если битовая глубина равна 24, а разрешающая способность дисплея – 800*600 пикселей?

Решение.
Для хранения одной страницы необходимо

800*600*24 = 11 520 000 бит = 1 440 000 байт. Для 4 соответственно 1 440 000 * 4 = 5 760 000 байт.

Пример №4.
Битовая глубин равна 24. Сколько различных оттенков серого цвета может быть отображено на экране?
Замечание: Оттенок серого цвета получается при равных значениях уровней яркости всех трех составляющих. Если все три составляющие имеют максимальный уровень яркости, то получается белый цвет; отсутствие всех трех составляющих представляет черный цвет.

Решение.
Так как для получения серых оттенков составляющие RGB одинаковы, то глубина равна 24/3=8. Получаем количество цветов 2 8 =256.

Пример №5.
Дана растровая сетка 10*10. Описать буку «К» последовательностью векторных команд.

способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

Задачи для самостоятельной работы.

№1. Какой объем видеопамяти необходим для хранения двух страниц изображения при условии, что разрешающая способность дисплея равна 640*350 пикселей, а количество используемых цветов – 16?

№2. Объем видеопамяти равен 1 Мб. Разрешающая способность дисплея – 800*600. Какое максимальное количество цветов можно использовать при условии, что видеопамять делится на две страницы?

№3. Битовая глубина равна 24. Опишите несколько вариантов двоичного представления светло-серых и темно-серых оттенков.

№4. На экране компьютера необходимо получить 1024 оттенка серого цвета. Какой должна быть битовая глубина?

№5. Для изображения десятичных цифр в стандарте почтового индекса (как пишут на конвертах) получить векторное и растровое представление. Размер растровой сетки выбрать самостоятельно.

№6. Воспроизвести на бумаге рисунки, используя векторные команды. Разрешающая способность 64*48.

А)
Цвет рисования Красный
Цвет закраски Желтый
Окружность 16, 10, 2
Закрасить 16, 10, Красный
Установить 16, 12
Линия к 16, 23
Линия к 19, 29
Линия к 21, 29
Линия 16, 23, 13, 29
Линия 13, 29, 11, 29
Линия 16, 16, 11, 12
Линия 16, 16, 21, 12

Б)
Цвет рисования Красный
Цвет закраски Красный
Окружность 20, 10, 5
Окружность 20, 10, 10
Закрасить 25, 15, Красный
Окружность 20, 30, 5
Окружность 20, 30, 10
Закрасить 28, 32, Красный

Источник

Кодирование информации — основные виды, способы и правила

Информация бывает разных видов, таких как запах, вкус, звук; символы и знаки. В различных отраслях науки, техники и культуры применяются особые формы и методики для кодирования и записи информации.

Рассмотрим, например, персональные компьютеры, которые предназначены для обработки графических изображений, воспроизведения музыки и видеофайлов, организации видео конференций, научных расчетов. Для предоставления данных в виде, понимаемом компьютерами, проводится кодирование информации путём составления специальной модели явления либо объекта. Именно процесс преобразования сообщения в комбинацию символов называется кодированием.

Системы счисления делятся на позиционные и непозиционные. Пример непозиционной системы счисления — римская: несколько чисел приняты за основные (например, I, V, X, L, C, D, M), а остальные получаются из основных путем сложения (как VI, VII) или вычитания (как IV, IX). В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает.

способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

Трактовка понятий

Человеческие мысли выражаются в виде текста, который состоит из слов. Подобное представление информации называется алфавитным, так как основа языка — алфавит. Он считается конечным набором различных знаков любой природы. Их используют для составления сообщений.

Вам известно что для обозначения количества мы пользуемся цифрами, для обозначения звуков на письме буквами. Можно сказать что цифры и буквы это коды. Одна и тажа информация может быть закодирована по разному. Например китайские и японские иероглифы являются символами которыми кодируется буква или слово. Основу любого языка составляет алфавит — конечный набор различных знаков (символов) любой природы, из которых складывается сообщение на данном языке. То есть символизация информации – это описание объектов или явлений с помощью символов того или иного алфавита. Под мощностью алфавита понимают количество символов, составляющий данный алфавит, что в свою очередь определяет количество возможных комбинаций (слов) которые можно составить из символов данного алфавита в соответствии с определенными правилами.

Как правило представления сообщения, подбираются так что бы его передача была как можно быстрее и надежней, а его обработка была как можно более удобной для адресата. Одно и тоже сообщение можно кодировать по разному. Одной систем кодирования является азбука. Можно кодировать и звуки одна из таких систем кодирования — ноты. Хранить можно не только текстовую и звуковую информацию, в виде кодов хранятся и изображения. Если рассмотреть рисунок через увеличительное стекло то видно что он состоит из точек. Координаты каждой точки можно запомнить в виде чисел. Цвет каждой точки можно запомнить так же в виде чисел. Такие числа могут храниться в памяти компьютера и передаваться на расстояния.

Чтобы зашифровать данные, необходимо знать правила записи кодов (условные обозначения информации). Понятие кодирование связано с преобразованием сообщений в комбинацию символов с учётом кодов. При общении люди используют русский либо другой национальный язык. В процессе разговора код передаётся звуками, а при письменном общении с помощью букв. У водителей или у пилотов обработка информации также осуществляется световыми сигналами, специальнвми символами — знаками.

Количество и графическое отображение символов в алфавитах естественных языков сложилось исторически и характеризуется особенностями языка (произносимыми звуками). Например русский алфавит имеет 33 символа, латинский – 26, китайский несколько тысяч.

К основным способам кодирования информации в информатике относятся: числовой, символьный (текстовый), графический. В первом случае используются числа, во втором — символы того алфавита, что и первоначальный текст, в третьем — картинки, рисунки, значки.

Двоичная методика

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. В процессе хранения, обработки и передачи информации в компьютере используется особая двоичная система кодирования, алфавит которой состоит всего из двух знаков «0» и «1». Дело в том, что компьютер способен обрабатывать и хранить только лишь один вид представления данных – цифровой. Связано это с тем, что в цифровой электронике удобнее всего представлять информацию в виде последовательности электрических импульсов: техническое устройство, безошибочно различающее 2 разных состояния сигнала, оказалось проще создать, чем то, которое бы безошибочно различало 5 или 10 различных состояний. Поэтому любую входящую в него информацию необходимо переводить в цифровой вид. Такое кодирование информации принято называть двоичным, на его основе работают все окружающие нас компьютеры, смартфоны и т.п.

На английском языке используется выражение binary digit либо сокращённо bit (бит). Через 1 бит можно выразить: да либо нет; белое или чёрное; ложь либо истина.

Двоичное кодирование информации привлекает тем, что легко реализуется технически. Электронные схемы для обработки двоичных кодов должны находиться только в одном из двух состояний: есть сигнал/нет сигнала или высокое напряжение/низкое напряжение. В результате любая информация кодируется в компьютерах с помощью последовательностей лишь двух цифр — 0 и 1.

Итак, минимальные единицы измерения информации – это бит и байт. Один бит позволяет закодировать 2 значения (0 или 1). Используя два бита, можно закодировать 4 значения: 00, 01, 10, 11. Тремя битами кодируются 8 разных значений: 000, 001, 010, 011, 100, 101, 110, 111. Из приведенных примеров видно, что добавление одного бита увеличивает в 2 раза то количество значений, которое можно закодировать. 1 байт состоит из 8 бит и способен закодировать 256 значений.

Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.

Наряду с битами и байтами используют и большие единицы измерения информации.

Подробнее о информации в компьютерных системах можно прочтитать в статье Понятие информации. Информатика

Текстовое значение

Кодирование и обработка текстовой информации Уже с 60-х годов прошлого столетия, компьютеры всё больше стали использовать для обработки текстовой информации. Для кодирования текстовой информации в компьютере применяется двоичное кодирование, т.е. представление текста в виде последовательности 0 и 1. Чтобы выразить текст числом, каждая буква сопоставляется с числовым значением. Смысл кодирования: одному символу принадлежит код в пределах 0−255 либо двоичный код от 00000000 до 11111111.

Текстовая информация состоит из символов: букв, цифр, знаков препинания и др. Одного байта достаточно для хранения 256 различных значений, что позво ляет размещать в нем любой из алфавитно-цифровых символов. Первые 128 сим волов (занимающие семь младших бит) стандартизированы с помощью кодировки ASCII (American Standart Code for Information Interchange). Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 0000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

В мировой практике для кодирования текста при помощи байтов используются разные стандарты. Самым распространенным, но не единственным видом кодирования является код ASCII. В соответствии с этим стандартом, знаки в пределах 0−32 соответствуют операциям, а 33−127 — символам из латинского алфавита, знакам препинания и арифметики. Для национальных кодировок применяются значения 128−255. В разных национальных кодировках одному и тому же коду соответствуют различные символы. К примеру, существует 5 кодировочных таблиц для русских букв (Windows, MS-DOS, Mac, ISO, КОИ – 8). Поэтому тексты созданные в одной кодировке не будут правильно отображаться в другой.

Первоначально в кодах ASCII было 7 бит информации. В последующем ее расширили до 8-битной (1 байт) кодировки. Обьем 7-битного кодирования по сравнению с 8-битным в 2 раза меньше. 2 7 =128 8 =256.

В настоящее время для кодирования кириллицы наибольшее распространение получила кодовая таблица СР1251, которая используется в операционных системах семейства Windows фирмы Microsoft. Во всех современных кодовых таблицах, кроме таблицы стандарта Unicode, для кодирования одного символа отводится 8 двоичных разрядов (8 бит).

В конце прошлого века появился новый международный стандарт Unicode, в котором один символ представляется двухбайтовым двоичным кодом. Применение этого стандарта – продолжение разработки универсального международного стандарта, позволяющего решить проблему совместимости национальных кодировок символов. С помощью данного стандарта можно закодировать 65536 различных символов.

Растровое изображение

Графическая информация, представленная в виде рисунков, фотографий, слайдов, подвижных изображений (анимация, видео), схем, чертежей, может создаваться и редактироваться с помощью компьютера, при этом она соответствующим образом кодируется. В настоящее время существует достаточно большое количество прикладных программ для обработки графической информации, но все они реализуют три вида компьютерной графики: растровую, векторную и фрактальную. Мы рассмотрим самую распространенный, растровый формат кодирования изображения.

Графические данные на мониторе представляются в качестве растрового изображения. Если более пристально рассмотреть графическое изображение на экране монитора компьютера, то можно увидеть большое количество разноцветных точек (пикселов – от англ. pixel, образованного от picture element – элемент изображения), которые, будучи собраны вместе, и образуют данное графическое изображение. Каждому пикселю присвоен особый код, в котором хранится информация об оттенке пикселя. Из этого можно сделать вывод: графическое изображение в компьютере определенным образом кодируется и должно быть представлено в виде графического файла.

способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

Файлы, созданные на основе растровой графики, предполагают хранение данных о каждой отдельной точке изображения. Для отображения растровой графики не требуется сложных математических расчетов, достаточно лишь получить данные о каждой точке изображения (ее координаты и цвет) и отобразить их на экране монитора компьютера.

Что делать, если рисунок цветной? Формирование цветного изображения на мониторе осуществляется путём смешивания 3-х основных цветов: синего, красного и зелёного. В этом случае для кодирования цвета пикселя уже не обойтись одним битом. В системе кодирования цветных изображений RGB (R — красный, G — зеленый и B — синий) яркость каждой цветовой составляющей (или, как говорят, каждого канала) кодируется целым числом от 0 до 255. При этом код цвета — это тройка чисел (R,G,B), яркости отдельных каналов. Цвет (0,0,0) — это черный цвет, а (255,255,255) — белый. Если все составляющие имеют равную яркость, получаются оттенки серого цвета, от черного до белого. При кодировании цвета на веб-страницах также используется модель RGB, но яркости каналов записываются в шестнадцатеричной системе счисления (от 0016 до FF16), а перед кодом цвета ставится знак #. Например, код красного цвета записывается как #FF0000, а код синего — как #0000FF.

способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Смотреть картинку способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Картинка про способы кодирования информации основанные на использовании дискретных прерывных сигналов называются. Фото способы кодирования информации основанные на использовании дискретных прерывных сигналов называются

Звуки и их разрядность

Человек воспринимает звуковые волны (колебания воздуха) с помощью слуха в форме звука различных громкости и тона. Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

В каждом современном компьютере предусмотрена звуковая плата, колонки, микрофон. С их помощью производится запись, сохраняются и воспроизводятся звуки — волны с определённой частотой и амплитудой. Программное обеспечение для компьютеров преобразовывает звуковые сигналы в последовательность нулей и единиц. Для этого использунтся аудиоадаптер или звуковая плата. Устройство подключается к компьютеру с целью преобразования электроколебаний звуковой частоты в двоичный код. Процесс преобразования выполняется как при вводе звуков в компьютер так и при обратном их преобразовании.

Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала. Компьютер — устройство цифровое, поэтому непрерывный звуковой сигнал должен быть преобразован в последовательность электрических импульсов (нулей и единиц). Оцифровку звука выполняет специальное устройство на звуковой плате. Называется оно аналого-цифровой преобразователь (АЦП). Обратный процесс — воспроизведение закодированного звука производится с помощью цифро-аналогового преобразователя (ЦАП).

В процессе кодирования непрерывного звукового сигнала производится его дискретизация по времени, или, как говорят, «временная дискретизация».

Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее «лесенка» цифрового звукового сигнала повторяет кривую аналогового звукового сигнала.

Глубина кодирования звука — это количество бит, используемое для кодирования различных уровней сигнала или состояний. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука, и тогда общее количество различных уровней громкомти, который сможет распознать компьютер будет: N = 2 16 = 65536.

Частота дискретизации- это количество измерений уровня звукового сигнала в единицу времени. Эта характеристика показывает качество и точность процедуры двоичного кодирования. Измеряется в герцах (Гц).

Одно измерение за одну секунду соответствует частоте 1 Гц, 1000 измерений за одну секунду — 1 килогерц (кГц). Частота дискретизации звукового сигнала может принимать значения от 8 до 196 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-CD. Достаточно высокое качество звучания достигается при частоте дискретизации 44 кГц и глубины кодирования звука, равной 16 бит.

Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. В случае, когда записываются абсолютные значения амплитуды, такой формат записи называется PCM ( Pulse Code Modulation). Стандартный аудио компакт-диск (CD-DA), применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44.1 кГц и разрядностью квантования 16 бит.

Подробнее о свойствах звука можно прочитать в статье Звук

Машинные команды

В вычислительных машинах, включая компьютеры, предусмотрена программа для управления их работой. Все команды кодируются в определённой последовательности с помощью нулей и единиц. Подобные действия называются машинными командами (МК).

Машинная команда представляет собой закодированное по определенным правилам указание микропроцессору на выполнение некоторой операции или действия. Каждая команда содержит элементы, определяющие:

Структура машинной команды состоит из операционной и адресной части. В операционной части содержится код операции. Чем длиннее операционная часть, тем большее количество операций можно в ней закодировать.

В адресной части машинной команды содержится информация об адресах операндов. Это либо значения адресов ячеек памяти, в которых размещаются сами операнды (абсолютная адресация), либо информация, по которой процессор определяет значения их адресов в памяти (относительная адресация). Абсолютная адресация использовалась только в машинах 1 и 2-го поколений. Начиная с машин 3-го поколения, наряду с абсолютной используется относительная адресация.

Подробнее о поколениях компьютеров смотрите в статье История развития компьютеров

Заключение

Итак, кодирование информации — процесс преобразования сигнала из формы, удобной для непосредственного использования информации, в форму, удобную для передачи, хранения или автоматической переработки (Цифровое кодирование, аналоговое кодирование, таблично-символьное кодирование, числовое кодирование). Процесс преобразования сообщения в комбинацию символов в соответствии с кодом называется кодированием, процесс восстановления сообщения из комбинации символов называется декодированием.

Кодирование информации — процесс формирования определенного представления информации. В более узком смысле под термином «кодирование» понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Информацию необходимо представлять в какой — либо форме, т.е. кодировать. Для представления дискретной информации используется некоторый алфавит. Однако однозначное соответствие между информацией и алфавитом отсутствует. Другими словами, одна и та же информация может быть представлена посредством различных алфавитов. В связи с такой возможностью возникает проблема перехода от одного алфавита к другому, причём, такое преобразование не должно приводить к потере информации.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *