вероятность того что непрерывная случайная величина примет точно заданное значение
Вероятность того что непрерывная случайная величина примет точно заданное значение
§ 3. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ
3.3. Непрерывные случайные величины.
Кроме дискретных случайных величин, возможные значения которых образуют конечную или бесконечную последовательность чисел, не заполняющих сплошь никакого интервала, часто встречаются случайные величины, возможные значения которых образуют некоторый интервал. Примером такой случайной величины может служить отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе. Такого рода, случайные величины не могут быть заданы с помощью закона распределения вероятностей р(х). Однако их можно задать с помощью функции распределения вероятностей F(х). Эта функция определяется точно так же, как и в случае дискретной случайной величины:
Таким образом, и здесь функция F(х) определена на всей числовой оси, и ее значение в точке х равно вероятности того, что случайная величина примет значение, меньшее чем х.
Формула (19) и свойства 1° и 2° справедливы для функции распределения любой случайной величины. Доказательство проводится аналогично случаю дискретной величины.
Случайная величина называется непрерывной, если для нее существует неотрицательная кусочно-непрерывная функция*
, удовлетворяющая для любых значений x равенству
(22) |
Функция называется плотностью распределения вероятностей, или кратко, плотностью распределения. Если x1
Так как , а на основании формулы (22)
, то
(24) |
Пользуясь формулой (22), найдем как производную интеграла по переменной верхней границе, считая плотность распределения
непрерывной**:
(25) |
Заметим, что для непрерывной случайной величины функция распределения F(х) непрерывна в любой точке х, где функция непрерывна. Это следует из того, что F(х) в этих точках дифференцируема.
На основании формулы (23), полагая x1=x, , имеем
В силу непрерывности функции F(х) получим, что
Таким образом, вероятность того, что непрерывная случайная величина может принять любое отдельное значение х, равна нулю.
Отсюда следует, что события, заключающиеся в выполнении каждого из неравенств
,
,
,
Имеют одинаковую вероятность, т.е.
В самом деле, например,
так как
Замечание. Как мы знаем, если событие невозможно, то вероятность его наступления равна нулю. При классическом определении вероятности, когда число исходов испытания конечно, имеет место и обратное предложение: если вероятность события равна нулю, то событие невозможно, так как в этом случае ему не благоприятствует ни один из исходов испытания. В случае непрерывной случайной величины число возможных ее значений бесконечно. Вероятность того, что эта величина примет какое-либо конкретное значение x1 как мы видели, равна нулю. Однако отсюда не следует, что это событие невозможно, так как в результате испытания случайная величина может, в частности, принять значение x1. Поэтому в случае непрерывной случайной величины имеет смысл говорить о вероятности попадания случайной величины в интервал, а не о вероятности того, что она примет какое-то конкретное значение.
Так, например, при изготовлении валика нас не интересует вероятность того, что его диаметр будет равен номиналу. Для нас важна вероятность того, что диаметр валика не выходит из поля допуска.
Пример. Плотность распределения непрерывной случайной величины задана следующим образом:
График функции представлен па рис. 7. Определить вероятность того, что случайная величина
примет значение, удовлетворяющее неравенствам
.Найти функцию распределения заданной случайной величины. (Решение)
Следующие два пункта посвящены часто встречающимся на практике распределениям непрерывных случайных величин — равномерному и нормальному распределениям.
Дальше. * Функция называется кусочно-непрерывной на всей числовой оси, если она на любом сегменте или непрерывна, или имеет конечное число точек разрыва I рода.
** Правило дифференцирования интеграла с переменной верхней границей, выведенное в случае конечной нижней границы, остается справедливым и для интегралов с бесконечной нижней границей. В самом деле,
Вероятность того что непрерывная случайная величина примет точно заданное значение
Тема «Непрырывные случайные величины»
Функцией распределения вероятностей называют функцию , определяющую вероятность того, что случайная величина
в результате испытания примет значение, меньшее
, то есть:
.
Случайную величину называют непрерывной, если ее функция распределения вероятностей есть непрерывная, кусочно-дифференцируемая функция с непрерывной производной.
Свойства функции распределения вероятностей случайной величины
1. Значения функции распределения вероятностей принадлежат отрезку :
.
2. Функция распределения вероятностей – неубывающая функция, то есть: , если
.
Следствие 1. Вероятность того, что случайная величина примет значение, заключенное в интервале , равна приращению функции распределения вероятностей на этом интервале:
.
Следствие 2. Вероятность того, что непрерывная случайная величина примет одно определенное значение, равна нулю.
Используя последнее следствие, легко убедиться в справедливости следующих равенств: .
3. Если возможные значения непрерывной случайной величины принадлежат интервалу , то:
, если
;
, если
.
Следствие. Если возможные значения непрерывной случайной величины расположены на всей числовой оси, то справедливы следующие предельные соотношения: ;
.
Плотностью распределения вероятностей непрерывной случайной величины называют функцию
– первую производную от функции распределения вероятностей
:
.
Таким образом, функция распределения вероятностей является первообразной для плотности распределения вероятностей.
Теорема. Вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу
, равна определенному интегралу от плотности распределения, взятому в соответствующих пределах:
.
Следовательно, зная плотность распределения вероятности , можно найти функцию распределения
по формуле
.
Свойства плотности распределения вероятностей
1. Плотность распределения вероятностей – неотрицательная функция: .
2. Несобственный интеграл от плотности распределения вероятностей в пределах от до
равен единице:
.
Вероятностный смысл плотности распределения вероятности. Вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу , приближенно равна (с точностью до бесконечно малых высшего порядка относительно
) произведению плотности распределения вероятности в точке на длину интервала
:
.
Числовые характеристики непрерывных случайных величин
Математическим ожиданием непрерывной случайной величины , возможные значения которой принадлежат отрезку
, называют определенный интеграл
.
Если возможные значения принадлежат всей числовой оси, то
(предполагается, что несобственный интеграл, стоящий в правой части равенства, существует).
Дисперсией непрерывной случайной величины называют математическое ожидание квадрата ее отклонения.
Если возможные непрерывной случайной величины принадлежат отрезку
, то
.
Если возможные значения принадлежат всей числовой оси, то
(предполагается, что несобственный интеграл, стоящий в правой части равенства, существует).
Средним квадратическим отклонением непрерывной случайной величины называют, как и для величины дискретной, квадратный корень из дисперсии: .
Непрерывная случайная величина, функция распределения и плотность вероятности
Определение непрерывной случайной величины и её связь с вероятностью
Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной, если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.
Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.
Так как для непрерывных случайных величин функция F(x), в отличие от дискретных случайных величин, нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.
Функция распределения непрерывной случайной величины и плотность вероятности
В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.
Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х.
Плотностью вероятности f(x) непрерывной случайной величины называется производная её функции распределения:
.
Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a; b]:
вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a; b], равна определённому интегралу от её плотности вероятности в пределах от a до b:
.
При этом общая формула функции F(x) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f(x) :
.
График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).
Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох, графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b.
Свойства функции плотности вероятности непрерывной случайной величины
1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f(x) и ось Ох) равна единице:
2. Функция плотности вероятности не может принимать отрицательные значения:
,
а за пределами существования распределения её значение равно нулю
Плотность распределения f(x), как и функция распределения F(x), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.
Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.
Если функция плотности распределения f(x) непрерывной случайной величины в некотором конечном интервале [a; b] принимает постоянное значение C, а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным.
Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным.
Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:
Найти функцию f(x) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .
Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:
Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:
.
Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:
Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:
Таким образом, функция плотности вероятности непрерывной случайной величины:
.
Таким образом, полная запись функции распределения вероятностей:
Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:
.
Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом
. Найти коэффициент А, вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X.
Решение. По условию приходим к равенству
.
Следовательно, , откуда
. Итак,
.
Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:
Теперь получим функцию распределения данной случайной величины:
Пример 4. Найти плотность вероятности непрерывной случайной величины X, которая принимает только неотрицательные значения, а её функция распределения .
Решение. По определению плотности вероятности получаем
при и
при
, поскольку F(x) для этих значений x постоянна (равна нулю).
Пример 5. Плотность распределения непрерывной случайной величины задана формулой:
(при x > 0 )
1) найти функцию распределения непрерывной случайной величины;
2) найти вероятность того, что непрерывная случайная величина примет значение, лежащее между 1 и 2.
2) вероятность попадания непрерывной случайной величины на участок между 1 и 2 вычислим как приращение функции распределения на этом участке:
Пример 6. Непрерывная случайная величина имеет плотность
при
.
1) найти вероятность попадания непрерывной случайной величины на участок от 0 до π/4;
2) функцию распределения непрерывной случайной величины.
1) находим вероятность:
.
2) находим функцию распределения непрерывной случайной величины:
Пример 7. Плотность распределения непрерывной случайной величины задана формулой
.
Найти вероятность попадания непрерывной случайной величины на участок (-1; +1)
.