для какого вида двигателя внутреннего сгорания применяется бензин ответ
Testsmart
Операторы АЗС Тестирование для подготовки
Вопрос
Тема 1 Нефтепродукты и их свойства
1.Какой способ перегонки нефти применяют для получения бензина с повышенной детонационной стойкостью?
Термический крекинг происходит при сильном нагревании, а каталитический проводится в присутствии катализатора и благодаря этому можно применять более низкую температуру.
Поэтому бензин каталитического крекинга обладает большей детонационной стойкостью (из-за наличия разветвленных углеводородов) и большей устойчивостью к окислению (из-за меньшего содержания непредельных углеводородов) и является поэтому более ценным топливом.
Вопрос
2.Какой способ перегонки нефти применяют для получения стабильного бензина?
На монтажные полиспасты
Комментарий: Каталитический риформинг – это процесс облагораживания низкокачественного бензина путем его каталитической переработки под давлением водорода в присутствии катализатора. В результате каталитического риформинга получается высокооктановый компонент автомобильных бензинов в результате каталитических превращений низкооктановых фракций, вырабатываемых при прямой перегонке и крекинге.
Вопрос
3.Для какого вида двигателя внутреннего сгорания применяется бензин?
Комментарий: Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.
Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания.
Вопрос
4.Какое число определяет детонационную стойкость бензина?
Комментарий: Детонационная стойкость — параметр, характеризующий способность топлива противостоять самовоспламенению при сжатии. Это важнейшая количественная характеристика топлива, на основе которой определяется его сортность и применимость в двигателях той или иной конструкции.
Окта́новое число́ (от [изо]октан) — показатель, характеризующий детонационную стойкость топлива (способность топлива противостоять самовоспламенению при сжатии) для двигателей внутреннего сгорания.
Вопрос
5.Концентрационные пределы распространения пламени для бензина составляют:
Вопрос
6.В каких видах двигателей внутреннего сгорания применяется дизельное топливо?
С воспламенением от искры
С воспламенением от впрыска
С воспламенением от сжатия
С воспламенением от наддува
Комментарий: Дизельные двигатели
Специальное дизельное топливо впрыскивается в определенный момент (не доходя до верхней мертвой точки) в цилиндр под высоким давлением через форсунку. Горючая смесь образуется непосредственно в цилиндре по мере впрыска топлива. Движение поршня внутрь цилиндра вызывает нагрев и последующее воспламенение топливовоздушной смеси.
По способу воспламенения:
— от искры (бензиновые),
— от сжатия (дизельные).
Вопрос
7.Температура, при которой пары вещества над поверхностью горючего вещества вспыхивают, при наличии источника воспламенения называется …
ГОСТ ISO 2719-2013 3.1 температура вспышки Минимальная температура, при которой происходит воспламенение паров образца от пламени в установленных условиях испытания при барометрическом давлении 101,3 кПа, при этом пламя распространяется по всей поверхности образца.
Вопрос
8.Что означает цетановое число дизельного топлива?
Комментарий: Цетановое число — характеристика воспламеняемостидизельного топлива, определяющая период задержки горения рабочей смеси (т.е. свежего заряда) (промежуток времени от впрыска топлива в цилиндр до начала его горения). Чем выше цетановое число, тем меньше задержка и тем более спокойно и плавно горит топливная смесь.
Вопрос
9.Плотность паров бензина по отношению к плотности воздуха…
Комментарий: Единицы измерения плотности (ρ) – (1 г/л = 1 кг/м3)
Воздух — 1.2928 кг/м3
Бензин (плотность 710-750 кг/м3.
Вопрос
10.Плотность бензина по отношению к воде…
Коршак А. А., Коробков Г. Е. и Муфтахов Е. М. Нефтебазы и АЗС. стр. 29.
Плотность различных нефтепродуктов при 20 °С (293 К) находится в пределах (кг/м 3 ): бензины — 726. 785,
Вода дистиллированная при 4°С 1000
Топлива и способы смесеобразования, применяемые в двигателях внутреннего сгорания
В двигателях внутреннего сгорания используются различные: газообразные, жидкие и даже твердые топлива, хотя практическое значение имеют только некоторые из них. Непосредственное сжигание, например, пылевидного твердого топлива в цилиндрах двигателя технически вполне осуществимо, и такие попытки имели место. Однако золообразование в цилиндрах, чрезмерно высокий износ двигателя и другие связанные с этим трудности до сих пор не преодолены. Поэтому твердые топлива предварительно газифицируются в специальных установках — газогенераторах или же используются как сырье для получения жидких топлив, например бензола. Таким образом, для приготовления рабочей смеси в двигателях внутреннего сгорания используются, как правило, жидкие или газообразные топлива.
Смесеобразование в поршневых двигателях во многом зависит от вида применяемого топлива.
Газообразное топливо смешивается с воздухом на входе в двигатель в специальном смесителе, поэтому в его цилиндры поступает уже готовая горючая смесь.
Топливовоздушную смесь из жидкого топлива и воздуха готовят Двумя способами:
1) чистый воздух и жидкое топливо подаются в цилиндры двигателя раздельно и перемешиваются непосредственно в цилиндрах, образуя с остаточными газами рабочую смесь;
2) жидкое топливо перемешивается с воздухом перед поступлением в цилиндры, куда поступает готовая горючая смесь.
Следовательно, возможны два способа приготовления топливо-воздушной смеси: вне цилиндров и непосредственно в цилиндрах. В зависимости от этого двигатели внутреннего сгорания принято разделять на двигатели с внешним и внутренним смесеобразованием.
В двигателях с внешним смесеобразованием и зажиганием рабочей смеси от электрической искры, работающих на жидком топливе, горючая смесь чаще всего подготавливается в карбюраторах. Такие двигатели принято называть карбюраторными. Внутреннее смесеобразование преимущественно используется в двигателях с воспламенением рабочей смеси от тепла, накапливаемого в процессе сжатия. Такие двигатели называются двигателями с воспламенением от сжатия, или дизелями (по имени изобретателя Рудольфа Дизеля).
В практике применяются и другие сочетания методов приготовления и воспламенения рабочей смеси в поршневых двигателях, но они не изменяют основу рассмотренных методов смесеобразования.
Моторные топлива независимо от того, из какого исходного сырья и каким методом они получены, должны обладать определенными физико-химическими свойствами, обеспечивающими надежную работу двигателей, хорошую их топливную экономичность и возможно меньшие износы деталей. Экономичность двигателей, а следовательно, и общий расход горючего в известной мере зависят от теплоты сгорания топлива. Особенно большое значение это имеет для транспортных двигателей, так как радиус действия транспортных средств зависит от запаса топлива, а емкости их баков ограничены.
Газообразные и жидкие топлива нефтяного происхождения представляют собой смеси различных углеводородов широкого фракционного состава. В практике используются топлива с фракционным составом от легких газообразных до тяжелых, трудно испаряемых.
Физико-химические свойства моторных топлив, как правило, регламентируются государственными стандартами, которые обязательно учитываются при проектировании новых двигателей.
Твердые топлива — антрацит, различные угли, древесина, торф, горючие сланцы и другие — используются для получения таких газообразных топлив, как светильный, коксовый, доменный и газогенераторный газы, а также жидких топлив в виде сланцевых, угольных и других бензинов и бензолов, пригодных для сжигания в двигателях внутреннего сгорания.
Жидкие моторные топлива по роду исходного сырья подразделяются на две группы: нефтяные и ненефтяные, получаемые, например, при соответствующей переработке твердого топлива. В двигателях внутреннего сгорания в основном применяются жидкие топлива, получаемые в больших количествах путем переработки нефти. Это бензин, керосин, газойлевые и соляровые фракции и даже мазут, который используется иногда в качестве тяжелого нефтяного топлива.
Бензин представляет собой наиболее летучую жидкую часть нефти, состоящую в основном из группы индивидуальных углеводородных соединений от пентана С5Н12 до октана C8H18. Температура кипения бензиновых компонентов нефти не превышает 185-205°С.
Керосин состоит из более тяжелых углеводородов, выкипающих при температуре 290-300°С. Еще более тяжелыми фракциями являются газойль и соляровое масло. Температура выкипания углеводородов газойлевой фракции достигает 380°С, а солярового масла — 500°С.
Для карбюраторных двигателей основным топливом служит бензин, а в двигателях с воспламенением от сжатия используется дизельное топливо, основанное на смеси фракций нефти, температура кипения которых не выходит за пределы 350°С. В крупных стационарных дизелях находят применение тяжелые моторные топлива, состоящие из смеси солярового масла и мазута. Газотурбинные двигатели работают на керосине.
Нефтяное топливо в основном состоит из химических элементов: углерода С и водорода Н. Содержание углерода колеблется в пределах 85 ÷ 87%, а водорода — 13 ÷ 15%. В небольших количествах они содержат кислород О, азот N, серу S и следы воды. Эти элементы входят в нефтепродукты в виде химических соединений, главными из которых являются углеводороды, составляющие следующие группы (ряды): алканы, цикланы и ароматические углеводороды бензольного ряда.
Групповой состав углеводородных соединений оказывает большое влияние на физико-химические свойства топлив, предопределяя возможности их использования в определенных типах двигателей.
Для топлив карбюраторных двигателей важнейшим качеством является, например, детонационная стойкость. Если детонационная стойкость топлива не соответствует выбранной (завышенной) степени сжатия, то нормальное протекание процесса сгорания нарушается. Сгорание приобретает взрывной характер, порождающий ударную волну давления, которая распространяется в цилиндре со сверхзвуковой скоростью. Удары детонационной волны о стенки цилиндра и поршень при многократном отражении вызывают вибрацию стенок, воспринимаемую как характерный резкий детонационный стук. Работа двигателя с детонационным сгоранием недопустима, так как ухудшает его показатели и приводит к разрушению некоторых ответственных деталей кривошипно-шатунного механизма.
Детонационная стойкость топлив зависит от группового состава углеводородных соединений. Чем больше в топливе ароматических соединений, тем выше его детонационная стойкость.
Антидетонационные свойства топлив оцениваются октановым числом путем сравнения топлив с эталонами. В качестве эталонов приняты изооктан (и—C8H18), обладающий хорошими антидетонационными свойствами, и нормальный гептан (н — С7Н16) с низкими антидетонационными свойствами. Октановое число топлива принимается численно равным процентному содержанию изооктана в такой смеси с нормальным гептаном, которая оказывается равноценной данному топливу по детонационной стойкости при испытаниях в стандартных условиях. Октановые числа (о. ч.) современных бензинов находятся в пределах 70 ÷ 100 единиц.
Для топлив, применяемых в дизелях, важнейшим качеством является самовоспламеняемость, определяющая степень жесткости работы двигателя, о которой можно судить, например, по резкости характерного стука, возникающего при работе дизеля. Самовоспламеняемость дизельных топлив оценивается цетановым числом, которое определяют путем сравнения работы стандартного двигателя на испытуемом топливе и па смеси эталонных топлив. В качестве эталонов используются цетан (С16Н34) из группы алканов с хорошей воспламеняемостью и альфа-метилнафталин (С10Н7СН3), являющийся ароматическим углеводородом, стойким против самовоспламенения. Цетановое число топлива принимается численно равным процентному содержанию цетана в такой смеси с альфа-метил нафталином, которая по самовоспламеняемости оказывается равноценной испытуемому топливу.
Чем выше содержание алканов в дизельном топливе, тем выше его склонность к самовоспламенению и тем мягче, без сильных стуков работают дизели. Цетановое число (ц. ч.) дизельных топлив составляет примерно 45—50 единиц.
Газообразные моторные топлива широко используются для питания как транспортных, так и стационарных силовых установок.
Топлива, предназначенные для транспортных газовых двигателей, должны обладать высокой теплотой сгорания, так как иначе трудно обеспечить достаточный запас топлива при ограниченных габаритах и весе транспортных средств и их силовых устройств. Для стационарных силовых установок это требование не является существенным, поскольку они могут питаться непосредственно от источников получения газа.
В качестве газообразного топлива в двигателях внутреннего сгорания используют природные, промышленные и газогенераторные газы. Природные газы получают из скважин подземных газовых месторождений и на промыслах добычи нефти (промысловые или нефтяные газы); промышленные газы представляют собой продукты переработки нефти, твердых горючих ископаемых (например, при выжиге кокса в доменном производстве, в ряде химических производств и т. д.); газогенераторные газы получают путем газификации различных твердых топлив в газогенераторных установках.
Природные и промышленные газы в зависимости от их агрегатного состояния при использовании в качестве топлива подразделяют на два класса или группы: сжимаемые (или сжатые) и сжижаемые (или сжиженные). Эти названия групп носят условный характер, так как при глубоком охлаждении сжиженными могут быть и газы первого класса, имеющие низкую критическую температуру.
Высококалорийные газы состоят в основном из метана и имеют низшую теплоту сгорания 5500 ÷ 9000 ккал/м3 (≈ 22—36 Мдж/м3). В эту группу входят газы природные, нефтяные (промысловые) и канализационные, получающиеся при переработке сточных вод городских канализационных систем. Сюда же относится метановая фракция коксового газа.
Среднекалорийные газы содержат много водорода и окиси углерода; низшая теплота сгорания их составляет 3500 ÷ 5500 ккал/м3 (≈ 14,2—22 Мдж/м3). В основном это коксовый газ, получаемый в больших количествах при выжиге кокса.
Низкокалорийные газы характеризуются небольшим содержанием горючих компонентов, состоящих в основном из окиси углерода— 20 ÷ 30%. На инертные компоненты (балластную часть) этих газов приходится до 65%, поэтому низшая теплота сгорания их находится в пределах 1000 ÷ 3500 ккал/м3 (≈ 4—14,2 Мдж/м3). В эту группу входят доменный и различные силовые (генераторные) газы. Используются они без предварительного сжатия в основном в стационарных силовых установках.
К сжижаемым газам относятся: этан С2Н6, пропан С3Н8, бутан С4Ню. этилен С2Н4, пропилен С3НС, бутилен С4Н8 и другие компоненты нефтяных (промысловых) и промышленных газов. Низшая теплота сгорания этих газов находится в пределах 14000 ÷ 26000 ккал/м3 (56—104 Мдж/м3) — сжижаются они при обычных температурах и относительно невысоких давлениях. Это выгодно отличает их даже от высококалорийных сжимаемых газов, так как позволяет обходиться более тонкостенными баллонами, рассчитанными на рабочее давление, не превышающее 16 ÷ 20 кГ/см2 (≈ 1,6—2,0 Мдж/м2).
В качестве топлива для транспортных двигателей применяются в основном пропано-бутановые смеси.
Газообразные топлива по сравнению с бензином обладают более высокими октановыми числами, составляющими 90 ÷ 120 единиц, что позволяет повышать степень сжатия в двигателях без опасения вызвать детонационное сгорание. При работе на газообразном топливе в поршневых двигателях заметно уменьшается также износ стенок цилиндров, меньше накапливается отложений, улучшается смесеобразование, вследствие чего облегчается пуск и обеспечивается более полное сгорание топлива в цилиндрах. Поэтому газообразное топливо целесообразно использовать в автомобильных двигателях.
В поршневых двигателях с внешним смесеобразованием можно использовать только некоторые из перечисленных видов моторных топлив — газообразные и жидкие, обладающие сравнительно хорошей испаряемостью, например бензин. При использовании топлив с недостаточной испаряемостью нельзя получить на входе в цилиндры горючую смесь с нужным паросодержанием, что нарушает смесеобразование и расстраивает нормальное протекание рабочего цикла в двигателе. С точки зрения ассортимента потребляемых топлив более предпочтителен поэтому способ внутреннего смесеобразования. Двигатели с внутренним смесеобразованием при соответствующей организации процессов могут практически работать на любых жидких моторных топливах, начиная от легких, высокооктановых бензинов до тяжелых погонов нефти. Такие многотопливные двигатели получают все большее распространение.
Операторы АЗС Тестирование для подготовки
Тема 1 Нефтепродукты и их свойства
1.Какой способ перегонки нефти применяют для получения бензина с повышенной детонационной стойкостью?
2.Какой способ перегонки нефти применяют для получения стабильного бензина?
Комментарий: Каталитический риформинг – это процесс облагораживания низкокачественного бензина путем его каталитической переработки под давлением водорода в присутствии катализатора. В результате каталитического риформинга получается высокооктановый компонент автомобильных бензинов в результате каталитических превращений низкооктановых фракций, вырабатываемых при прямой перегонке и крекинге.
3.Для какого вида двигателя внутреннего сгорания применяется бензин?
Комментарий: Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки. Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания.
4.Какое число определяет детонационную стойкость бензина?
Комментарий: Детонационная стойкость — параметр, характеризующий способность топлива противостоять самовоспламенению при сжатии. Это важнейшая количественная характеристика топлива, на основе которой определяется его сортность и применимость в двигателях той или иной конструкции. Окта́новое число́ (от [изо]октан) — показатель, характеризующий детонационную стойкость топлива (способность топлива противостоять самовоспламенению при сжатии) для двигателей внутреннего сгорания.
5.Концентрационные пределы распространения пламени для бензина составляют:
6.В каких видах двигателей внутреннего сгорания применяется дизельное топливо?
7.Температура, при которой пары вещества над поверхностью горючего вещества вспыхивают, при наличии источника воспламенения называется …
ГОСТ ISO 2719-2013 3.1 температура вспышки Минимальная температура, при которой происходит воспламенение паров образца от пламени в установленных условиях испытания при барометрическом давлении 101,3 кПа, при этом пламя распространяется по всей поверхности образца.
8.Что означает цетановое число дизельного топлива?
Комментарий: Цетановое число — характеристика воспламеняемостидизельного топлива, определяющая период задержки горения рабочей смеси (т.е. свежего заряда) (промежуток времени от впрыска топлива в цилиндр до начала его горения). Чем выше цетановое число, тем меньше задержка и тем более спокойно и плавно горит топливная смесь.
9.Плотность паров бензина по отношению к плотности воздуха…
Комментарий: Единицы измерения плотности (ρ) – (1 г/л = 1 кг/м3) Воздух — 1.2928 кг/м3 Бензин (плотность 710-750 кг/м3.
10.Плотность бензина по отношению к воде…
Бензиновый двигатель внутреннего сгорания
Бензиновые двигатели — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая топливовоздушная смесь поджигается электрической искрой. Управление мощностью в данном типе двигателей производится, как правило, регулированием потока воздуха, посредством дроссельной заслонки.
Одним из видов дросселя является карбюраторная дроссельная заслонка, регулирующая поступление горючей смеси в цилиндры двигателя внутреннего сгорания. Рабочий орган представляет собой пластину, закрепленную на вращающейся оси, помещённую в трубу, в которой протекает регулируемая среда. В автомобилях управление дросселем производится с места водителя, причём обычно предусматривается двойная система привода: от руки рычажком или кнопкой и от ноги педалью. Их обычно связывают между собой так, что при нажатии водителем на педаль кнопка ручного управления остаётся неподвижной, а при вытягивании кнопки ручного управления педаль опускается. Дальнейшее открывание дросселя можно производить педалью. При отпускании педали дроссель остаётся в положении, установленном ручным управлением.
Содержание
Классификация бензиновых двигателей
Рабочий цикл бензинового двигателя
Рабочий цикл четырёхтактного двигателя
Как следует из названия, рабочий цикл четырёхтактного двигателя состоит из четырёх основных этапов — тактов.
Необходимо также помнить, что следующий процесс (например, впуск), необязательно должен начинаться в тот момент, когда закончится предыдущий (например, выпуск). Такое положение, когда открыты сразу оба клапана (впускной и выпускной), называется перекрытием клапанов. Перекрытие клапанов необходимо для лучшего наполнения цилиндров горючей смесью, а также для лучшей очистки цилиндров от отработанных газов.
Рабочий цикл двухтактного двигателя
В двухтактном двигателе рабочий цикл полностью происходит в течение одного оборота коленчатого вала. При этом от цикла четырёхтактного двигателя остаётся только сжатие и расширение. Впуск и выпуск заменяются продувкой цилиндра вблизи НМТ поршня, при которой свежая рабочая смесь вытесняет отработанные газы из цилиндра.
Более подробно цикл двигателя устроен следующим образом: когда поршень идёт вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно, движущийся вверх поршень создаёт разрежение в кривошипной камере. Под действием этого разрежения открывается клапан впускного коллектора и свежая порция топливовоздушной смеси (как правило, с добавкой масла) засасывается в кривошипную камеру. При движении поршня вниз давление в кривошипной камере повышается и клапан закрывается. Поджиг, сгорание и расширение рабочей смеси происходят так же, как и в четырёхтактном двигателе. Однако, при движении поршня вниз, примерно за 60° до НМТ открывается выпускное окно (в смысле, поршень перестаёт перекрывать выпускное окно). Выхлопные газы (имеющие ещё большое давление) устремляются через это окно в выпускной коллектор. Через некоторое время поршень открывает также впускное окно, расположенное со стороны впускного коллектора. Свежая смесь, выталкиваемая из кривошипной камеры идущим вниз поршнем, попадает в рабочий объём цилиндра и окончательно вытесняет из него отработавшие газы. При этом часть рабочей смеси может выбрасываться в выпускной коллектор. При движении поршня вверх свежая порция рабочей смеси засасывается в кривошипную камеру.
Можно заметить, что двухтактный двигатель при том же объёме цилиндра, должен иметь почти в два раза большую мощность. Однако, полностью это преимущество не реализуется, из-за недостаточной эффективности продувки по сравнению с нормальным впуском и выпуском. Мощность двухтактного двигателя того же литража, что и четырёхтактный больше в 1,5 — 1,8 раза.
Важное преимущество двухтактных двигателей — отсутствие громоздкой системы клапанов и распределительного вала.
Преимущества 4-тактных двигателей
Преимущества двухтактных двигателей
Карбюраторные и инжекторные двигатели
В карбюраторных двигателях процесс приготовления горючей смеси происходит в карбюраторе — специальном устройстве, в котором топливо смешивается с потоком воздуха за счёт аэродинамических сил, вызываемых энергией потока воздуха, засасываемого двигателем.
В инжекторных двигателях впрыск топлива в воздушный поток осуществляют специальные форсунки, к которым топливо подаётся под давлением, а дозирование осуществляется электронным блоком управления — подачей импульса тока, открывающим форсунку или же, в более старых двигателях, специальной механической системой.
Одной из первых такие разработки внедрила в свои моторы корпорация OMC в 1997 году, выпустив двигатель, построенный с использованием технологии FICHT. В этой технологии ключевым фактором было использование специальных инжекторов, которые позволяли впрыскивать топливо непосредственно в камеру сгорания. Это революционное решение наряду с использованием современного бортового компьютера позволило точно дозировать топливо в тот момент, когда поршень при обратном движении перекроет все окна. Плюс в полость коленвала распыляется чистое масло, которое не смывается топливом — теперь его там нет! Топливо не смывает масло, что позволяет уменьшить его количество. Благодаря этому решению разработчики получили двухтактный двигатель с его совершенной динамикой разгона, великолепной кривой мощности и малым весом, но при этом имеющий уровни выброса и экономичности, как у карбюраторного четырехтактного двигателя.
Переход от классических карбюраторных двигателей к инжекторам произошёл в основном из-за возрастания требований к чистоте выхлопа (выпускных газов), и установке современных нейтрализаторов выхлопных газов (каталитических конвертеров или просто катализаторов). Именно система впрыска топлива, контролируемая программой блока управления, способна обеспечить постоянство состава выхлопных газов, идущих в катализатор. Постоянство же состава необходимо для нормальной работы катализатора, так как современный катализатор способен работать лишь в узком диапазоне данного состава, и требует строго определённого содержания кислорода. Именно поэтому в тех системах управления, где установлен катализатор, обязательным элементом является лямбда-зонд, он же кислородный датчик. Благодаря лямбда-зонду система управления, постоянно анализируя содержание кислорода в выхлопных газах, поддерживает точное соотношение кислорода, недоокисленных продуктов сгорания топлива, и оксидов азота, которое способен обезвредить катализатор. Дело в том, что современный катализатор вынужден не только окислять не полностью сгоревшие в двигателе остатки углеводородов и угарный газ, но и восстанавливать оксиды азота, а это — процесс, идущий совершенно в другом (с точки зрения химии) направлении. Желательно также ещё раз окислять окончательно весь поток газов. Это возможно лишь в пределах так называемого «каталитического окна», то есть узкого диапазона соотношения топлива и воздуха, когда катализатор способен выполнить свои функции. Соотношение топлива и воздуха в данном случае составляет примерно 1:14,7 по весу (зависит также от соотношения С к Н в бензине), и удерживается в коридоре приблизительно плюс-минус 5 %. Так как одной из труднейших задач является удержание нормативов по оксидам азота, дополнительно необходимо снижать интенсивность их синтеза в камере сгорания. Делается это в основном снижением температуры процесса горения с помощью добавления определённого количества выхлопных газов в камеру сгорания на некоторых критичных режимах (Система рециркуляции выхлопных газов).