до какой скорости разгоняются частицы в адронном коллайдере
Большой адронный коллайдер побил мировой рекорд скорости частиц
Большой адронный коллайдер (БАК) (ФОТО) разогнал пучок протонов, циркулирующий по 27-километровому туннелю, до рекордной скорости в 1,18 тераэлектронвольт (ТэВ). Таким образом ученые доказали, что Большой адронный коллайдер стал самым мощным ускорителем элементарных частиц в мире. Прежний рекорд в 1 ТэВ принадлежал коллайдеру «Тэватрон» лаборатории «Ферми», расположенного вблизи Чикаго.
Прежний рекорд был установлен в 2001 году. Впрочем, на достигнутом учёные из Европейского центра ядерных исследований (ЦЕРН) останавливаться не намерены: к первому кварталу следующего года ученые надеются довести энергию до 7 ТэВ или 3,5 ТэВ на пучок.
При помощи анализа результатов столкновения частиц ученые надеются глубже проникнуть в тайны материи, достичь самых высоких из когда-либо изученных энергий. При самом оптимистичном исходе исследователи смогут воссоздать условия, существовавшие 13 миллиардов лет назад спустя 1-2 триллионные доли секунды после Большого взрыва, приведшего, по господствующей в современной науке теории, к возникновению нашей Вселенной. Ради этого и создавался Большой адронный коллайдер. На его строительство были потрачены 10 миллиардов швейцарских франков (9,8 миллиардов долларов США).
Первые столкновения частиц, пока на низких энергиях, были зафиксированы учеными ЦЕРН неделю назад после того, как 20 ноября БАК был запущен после ремонта, длившегося более года. Большой адронный коллайдер построен близ Женевы на глубине 100 метров на границе Швейцарии и Франции, напоминает ИТАР-ТАСС.
Большой адронный коллайдер (БАК) — крупнейший в мире ускоритель элементарных частиц, который поможет узнать тайну возникновения Вселенной. БАК – это 27-километровый туннель, вырытый на стометровой глубине, разгоном пучков протонов в котором управляют 53 сверхпроводящих магнита. Именно они и стали узким местом коллайдера – магниты могут работать только при температурах, близких к абсолютному нулю (минус 273 градуса по Цельсию). Первый запуск коллайдера сопровождался слухами о том, что его работа может быть потенциально опасна, однако ученые опровергли все эти домыслы. По своему научному значению пуск коллайдера под Женевой намного превосходит даже полет на Луну. Над его созданием 14 лет работали ученые из 40 стран.
Как ученые разгоняют частицы в адронном коллайдере? И что происходит при столкновении частиц?
Пожалуй, напишу как БАК работает вообще.
Вообразите себе обычный баллон со сжатым водородом. Вроде бы мелочь, но именно с него начинается работа самого большой ускорителя элементарных частиц в мире.
Атомы водорода поступают в камеру подачи линейного ускорителя строго отмеренными порциями. Там от от них отделяют электроны( отрицательно заряженные элементарные частицы) оставляя только ядра водорода- протоны (положительно заряженные элементарные частицы). Как раз это положительный заряд позволяет давать им ускорение при помощи электрического поля. Дальше их сталкивают друг с другом, чтобы выделить большой объём энергии. Кстати, эта модель повторяет те действия, которые происходили в момент Большого Взрыва. После протоны отправляют в линейный ускоритель. На выходе отсюда протоны будут двигаться со скоростью, равной 1/3 скорости света. Это всё первый этап.
Теперь они готовы к второму этапу- попаданию в бустерЧастицы разделяют на 4 части, что максимально увеличить плотность их потока. Каждая часть поступает в отдельное кольцо бустера. Длина каждого кольца 137 м. Здесь применено круговое движение, поскольку линейное уже не эффективно. Чтобы придать большую скорость, частицы проходят по кругу много раз, причём на них воздействуют пульсирующим электрическим полем. Нужное направление регулируют магнитами, мощное излучение удерживают их на этой траектории. Здесь их разгоняют до 91,6% скорости света, собирая их в плотный пучок.
После этого частицы из всех четырёх колец собираются вместе и поступают в фотонный синхротрон. Это наша третья ступень. Что же будет происходить с двумя такими порциями протонов? Длина синхротрона 628 м. Это расстояние протоны проходят за 1,2 секунды разгоняясь до 99.9% скорости света. Классно, неправда ли? Именно здесь достигается точка перехода. К энергии движения частиц прибавляется энергия электрического поля, но дальше частицы разгонятся почти не могут, запрещено природой.Но за счёт этого увеличивается масса протонов. Поэтому они не разгоняются, а становятся тяжелее. Кинетическая энергия( грубо, говоря, энергия движения, которая учитывает массу/скорость) измеряется в электрон вольтах. На этом этапе энергия каждой частицы равняется примерно 25 млрд. эВ, а масса протонов в 25 раз тяжелее, чем в состояние покоя.
И так мы плавно перешли уже к четвёртая стадия- протонный супер синхротрон. Огромное 7-ми километровое кольцо. Его задача принять протоны с таким запасом энергии и увеличить его до 450 млрд.
Через некоторое время частицы будут готовы к перемещению в Большой Адронный Коллайдер. Это самая интересная, пятая часть. Расположен он на границе Франции и Швейцарии, в Европейских Альпах. БАК расположен глубоко под землёй и растянут на 27 км. В нём проложены 2 вакуумных трубы. По ним в противоположном направлении движутся пучки протонов. С помощью специальных устройств новые порции протонов поступают так, чтобы не мешать уже загруженным. Эти трубы пресекаются в четырёх точках, где стоят детекторы. Здесь протоны пересекаются друг с другом. При столкновения энергия каждого пучка увеличивается в двое. Детекторы позволяют учёным следить за изменениями в местах столкновений. За полчаса в БАК поступают около 2800 порций частиц. Все это время коллайдер придаёт нашим частицам энергии.Каждую секунду, протоны проходят это круг более 11 тысяч раз (27км, между прочим!), постоянно получай импульсы электрического поля. Энергия каждого протона составляет уже 7 тера эВ, а масса в 7000 раз больше состояния покоя. Круговое движение сохраняет всё тоже магнитное поле. Оно так велико, что его электро магниты должны выдерживать электро ток силой в 12 тысяч ампер. А всё благодаря прекрасному охлаждению, в результате которого магниты становятся сверх проводимыми.
Теперь протоны готовы к столкновению. Магниты регулируют нужную траекторию. Общая энергия двух сталкивающихся протонов равна 14 тера эВ. Это всплеск наблюдается в течении 2-ух секунд после столкновения. Траектория выделившихся в результате частиц анализируются компьютерами, к которым подключены детекторы.
Теперь вы знаете как работает самое огромный, дорогой и самое крутой научный прибор в мире.
Большой адронный коллайдер побил мировой рекорд скорости частиц
Таким образом ученые доказали, что Большой адронный коллайдер стал самым мощным ускорителем элементарных частиц в мире. Прежний рекорд в 1 ТэВ принадлежал коллайдеру «Теватрон» лаборатории «Ферми», расположенного вблизи Чикаго.
Прежний рекорд был установлен в 2001 году. Впрочем, на достигнутом учёные из Европейского центра ядерных исследований (ЦЕРН) останавливаться не намерены: к первому кварталу следующего года ученые надеются довести энергию до 7 ТэВ или 3,5 ТэВ на пучок.
Генеральный директор ЦЕРН Рольф Хойер:
— Это фантастика. Мы продолжаем идти вперед шаг за шагом, но необходимо еще многое сделать прежде, чем мы начнем физические эксперименты в 2010 году.
При помощи анализа результатов столкновения частиц ученые надеются глубже проникнуть в тайны материи, достичь самых высоких из когда-либо изученных энергий. При самом оптимистичном исходе исследователи смогут воссоздать условия, существовавшие 13 миллиардов лет назад спустя 1-2 триллионные доли секунды после Большого взрыва, приведшего, по господствующей в современной науке теории, к возникновению нашей Вселенной. Ради этого и создавался Большой адронный коллайдер. На его строительство были потрачены 10 миллиардов швейцарских франков (9,8 миллиардов долларов США).
Первые столкновения частиц, пока на низких энергиях, были зафиксированы учеными ЦЕРН неделю назад после того, как 20 ноября БАК был запущен после ремонта, длившегося более года. Большой адронный коллайдер построен близ Женевы на глубине 100 метров на границе Швейцарии и Франции, напоминает ИТАР-ТАСС.
masterok
Мастерок.жж.рф
Хочу все знать /наука, история, политика, творчество/
Еще в школе учат, что свет является самым быстрым в природе и способен преодолевать огромные расстояния за несколько секунд. Но какой объект считается самым скоростным после света?
Несмотря на то, что свет считается неосязаемым объектом, он состоит вполне из реальных частиц – фотонов, обладающих нулевой массой в состоянии покоя. Находясь в вакууме, они перемещаются в пространстве со скоростью 299 792 458 м/с, что на данный момент считается самым быстрым показателем скорости.
Интересный факт: расстояние от Земли до Солнца, размером в 150 миллионов километров, свет проходит за 8 минут 19 секунд.
Самый быстрый объект после света
Учитывая высокую скорость света, может показаться, что во вселенной не существует вещей, способных двигаться хотя бы наполовину медленнее. Так и считалось долгое время, пока 15 октября 1991 года американские ученые не сделали удивительное открытие.
В атмосфере Земли с помощью специального детектора “Fly’s Eye” были зарегистрированы протоны, обладающие огромным импульсом. Несмотря микроскопический размер, частицы обладали энергией теннисного мячика, летящего со скоростью 150 км/ч. Это позволяло им разгоняться до скорости, практически полностью совпадающей со световой. Их назвали OMG-particle (протоны “О боже мой”).
Ученым удалось установить, что за 215 000 лет OMG проходит расстояние, всего лишь на сантиметр меньшее пути, которое преодолевает световой протон, а его скорость равна 99,99999999999999999999951% от световой. Таким образом, “О боже мой” считаются вторыми по скорости объектами во вселенной. На текущий момент подобных частиц зарегистрировано около сотни.
Ученые начали сравнивать свойства OMG с поведением частиц, разгоняемых в адронном коллайдере. Оказалось, что во время взаимодействия с атмосферой Земли протоны потратили большое количество кинетической энергии, и величина последней оказалась в 50 раз больше аналогичной, выделяемой при столкновении частиц в ускорителе.
Скорость частиц в адронном коллайдере
После того, как в 2000-ом свою работу прекратил большой электрон-позитронный коллайдер, было принято решение построить усовершенствованную модель. Еще во второй половине 80-х ученые создавали различные наработки и чертежи, которые начали реализовываться в 2001-ом году.
В эксплуатацию адронный коллайдер был запущен в 2008 году, но спустя пару недель один из его контактов расплавился и спровоцировал аварию. Из-за этого работу пришлось остановить до середины 2009 года. Приведя установку в порядок, работники и ученые возобновили эксперименты. Основной их деятельностью было столкновение различных частиц на больших скоростях и изучение полученных продуктов в ходе реакции. Одним из наиболее значимых открытий, сделанных с помощью установки, является обнаружение элементарной частицы – бозона Хиггса, существование которой предсказывал ученый еще в 1964 году.
И если в первое время после аварии ученые не осмеливались использовать всю мощность коллайдера, то постепенно они начали разгонять частицы все быстрее. Конструкция устройства представляет собой замкнутый тоннель, длина окружности которого составляет 26 659 м. Частица двигается по кругу с определенной скоростью, и максимальное значение данной величины было получено при запуске протонов с энергией 7 ТэВ: их скорость лишь на 3 м/c медленнее световой. Это значит, что за секунду частица делает полный круг примерно 10 тысяч раз. В теории, такие протоны можно считать третьими по скорости объектами во вселенной.
Десять лет Большому адронному коллайдеру: чудо современной физики
10 сентября 2008 года в ЦЕРНе было официально объявлено о запуске Большого Адронного Коллайдера. Сегодня мы расскажем вам о том, как появилась идея этого грандиозного проекта и чем современная физика ему обязана.
Вначале о терминологии и ее следствиях. Адроны — это элементарные частицы. Конкретно БАК сделан для столкновений пучков протонов, запущенных в кольцо ускорителя на очень больших (меньше скорости света всего на 3 метра в секунду) скоростях. Сталкиваясь, они порождают уйму других частиц. Многие из них живут слишком недолго, чтобы их можно было непосредственно обнаружить. Физики регистрируют продукты их распада, а то и результаты последующих распадов.
Примерно один месяц в году вместо протонов в кольцо БАКа отправляются ионы свинца, которые тоже сталкиваются на приличных скоростях.
Коллайдер — это ускоритель, в котором сталкиваются пучки разогнанных частиц. Возможен и иной вариант — когда эти частицы бомбардируют неподвижную мишень. Нам это сейчас неинтересно, поскольку на БАКе этого нет.
Ну, а «большой» он из-за геометрических размеров. Длина основного кольца — 26 659 м. Сегодня это — самый большой ускоритель в мире.
Концепция коллайдера рождалась примерно с 1984 года. Спустя десять лет она получила официальное признание и началось проектирование. Для размещения конструкций был использован кольцевой тоннель, прежде занятый Большим электрон-позитронным коллайдером. Последний был демонтирован в 2000 году. Первые устройства БАК были смонтированы в следующем году.
Главная задача БАК (иногда используется латинская аббревиатура LHC) — поиск данных, свидетельствующих о том, что реальная физика элементарных частиц отличается от Стандартной модели. Последняя была сформулирована теоретиками во вторую половину XX века и описала взаимосвязь сильного, слабого и электромагнитного взаимодействий и порождаемые ими последствия в мире элементарных частиц.
«За кадром» осталась гравитация. Она, очевидно, есть, но сформулировать теорию, объединяющую ее с другими взаимодействиями, ученые пока не смогли. Это порождает предположения, что Стандартная модель должна быть частью какой-то более общей концепции. В популярной литературе она условно называется «Новой физикой». Или — что Стандартная модель в принципе неверна и надо все придумывать заново. Последний вариант для большинства физиков даже симпатичнее, поскольку сулит большую свободу для творческой фантазии.
Отдельная тема — опыты со столкновенями ионов свинца, во время которых изучается кварк-глюонная плазма, очень интересный вид материи.
Что из этого вышло?
Да, по‑хорошему, ничего. Стандартная модель оказалась очень живучей, за десять лет так и не удалось найти чего-то существенно ставящего ее под сомнение. Было документировано несколько событий, которые не наблюдались ранее, но, в целом, не стали большим сюрпризом. Так, в 2011 году были открыты два новых вида распада Bs-мезонов — частиц, в составе которых есть как «странный кварк» (s-кварк), так и «прелестный кварк» (b-кварк).
Это самое громкое на сегодня открытие, сделанное на LHC. Частица была предсказана в рамках Стандартной модели еще в середине 60-х годов, но экспериментально ее обнаружить все это время не удавалось — имеющимся ускорителям не хватало мощности. Автор гипотезы британский физик Питер Хиггс неоднократно заявлял, что знаменитый бозон не будет открыт при его жизни. Он не был единственным скептиком — Стивен Хокинг даже выразил готовность заключить пари на небольшую сумму относительно того, что бозон Хиггса на БАКе обнаружен не будет.
Тем не менее, в июле 2012 года коллаборации ATLAS и CMS объявили о нахождении бозона массой 125.3 ± 0.6 ГэВ. Скорее всего, это и есть знаменитый бозон Хиггса, хотя некоторые специалисты в этом по‑прежнему не уверены.
Во всяком случае, Питер Хиггс за подтвердившееся предсказание получил Нобелевскую премию 2013 года. Нобелевский комитет очевидно торопился — лауреату было уже хорошо за 80.
Выплатил ли Хокинг свой проигрыш достоверно неизвестно, но можно предполагать, что его гораздо больше огорчило очередное подтверждение Стандартной модели. Как было бы здорово формулировать Новую Физику!
Большой адронный коллайдер проработает до 2037 года. Что будет следующим шагом в строительстве ускорителей пока не очень понятно. Физиков интересует увеличение светимости, т. е., выражаясь упрощенно, количества детектируемых столкновений. Может быть этого можно достичь на ускорителях традиционной, кольцевой, архитектуры. Все принципы и технологии освоены и изучены, но кольцо получается очень большим и дорогим.
Может быть следующий флагман физики будет линейным ускорителем. Это существенно экономнее по энергии, но тогда нужны новые способы разгона частиц, иначе установка опять оказывается слишком большой — порядка сотен километров.
Может быть речь пойдет об ускорителе на основе иных принципов — фотонном или мюонном, но этих принципов в разработанном виде пока нет.
Отдельная интересная тема — вероятный ускоритель для изучения бозона Хиггса. БАК вполне подошел для его обнаружения, но изучать частицу на нем неудобно. Слишком много посторонних событий, на фоне которых трудно выявить нужное. Напрашивается конструкция, оптимизированная именно под бозон Хиггса, на которой его образование/распад регистрировались бы значительно чаще, чем сейчас и с меньшим количеством помех.
А как же черные дыры?
Это страшилка десятилетней давности: вот запустят свихнувшиеся очкарики свой коллайдер, в нем там возникнет маленькая черная дыра, она скушает вещество вокруг себя, подрастет, скушает еще и т. п. Короче говоря, в итоге поглощена будет вся планета.
Это смешно звучит, но были ведь пылкие люди, педалировавшие эту тему и даже подававшие судебные иски.
Прошло десять лет. Видимо, дыра родилась, поглотила все вокруг, включая нас, а мы этого и не заметили. Так и живем.
Так блэт, а когда там черную дыру сделают и на работу ходить не надо. А то давно обещали.
Надеюсь, что он не взорвался и не создал черную дыру 10 лет назад, потому что хочу верить в то, что происходит вокруг, и это не плод моей фантазии
Как время то летит! Мне вспоминается, что это было совсем недавно. Помню даже как пугали что коллайдер сделает чёрную дыру и все умрут.
То чувство, когда ничего не понял, но всё равно интересно
я бы лучше почитал про то, как рф продала необходимые для постройки технологии и почти ничего с этого не поимела
Как раз сейчас атомную физику и теорию поля начали изучать в институте. Хоть узнаю, зачем нужен коллайдер)
Псиионизационное излучение(я его только что придумал) БАК’а стабилизировало гиперпространство и пространство, да так, что все боги, демоны и загробные миры окрестностей схлопнулись. Также оно запустило цепную реакцию по преобразованию маны(тип энергии-излучения неквалифицированной в стандартной модели) в аналогичное излучение и деструктурировало энергетику потенциальных магов(Наиболее распространёнными последствиями являются раковыми опухолями).
Это происходило во смежном мире, но порталы(не смогли перенести ни одного живого человека) спасающихся магов перенесли часть излучения в наш мир. Увы, но способность излучения к саморепликации оказалось слишком сильна, и мы лишились магии задолго до задокументированных исторических событий.
«Физиков интересует увеличение светимости, т. е., выражаясь упрощенно, количества детектируемых столкновений»
100-километровому суперколлайдеру быть! Что нас ждёт за пределами известной физики?
100-километровому суперколлайдеру быть! Что нас ждёт за пределами известной физики?
Целью второго этапа станет поиск новых частиц или сил природы, а также расширение или, возможно, замена нынешней стандартной модели физики частиц. Начать строительство, согласно одобренному 19 июня документу, предполагается в 2038 году. Правда, проекту придётся преодолеть несколько серьёзных проблем.
Другая проблема заключается в том, что огромная часть технологий, которые потребуется для ускорителя второго этапа, ещё не разработаны. Хотя здесь есть и положительный момент — эти технологии станут предметом интенсивного изучения на ближайшие десятилетия. До создания нового коллайдера CERN будет продолжать эксплуатировать модернизированную версию нынешнего под названием High Luminosity LHC, который в настоящее время строится, а ориентировочно с 2024 года начнётся, собственно, модернизация, которая продлится около 2,5 лет. Так почему вообще коллайдер?
Дело в том, что на сегодняшний день у нас нет столь же надёжного эквивалентного способа искать ответы на вопросы мироздания. В конце концов, именно ускоритель частиц может помочь открыть антиматерию, которая позволит нам путешествовать между звёздами. Вполне вероятно, что в итоге мы дойдём и до строительства коллайдера космических масштабов, но для начала надо достичь текущую цель
В ЦЕРН уточнили свойства загадочной частицы X(3872)
Коллаборация LHCb (CERN, Европейская организация по ядерным исследованиям), в которую входят Институт ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) и Новосибирский государственный университет (НГУ), объявила о новых данных, полученных при анализе частицы X(3872). Частица была обнаружена в 2003 г. в эксперименте Belle (KEK, Исследовательская организация ускорителей высоких энергий, Япония), но до сих пор специалистам не удалось прийти к единому мнению о кварковой структуре этой частицы. Участникам эксперимента LHCb удалось с лучшей в мире точностью измерить ширину и массу X(3872), а также сделать некоторые предположения о ее природе. Эксперименты на детекторе КЕДР электрон-позитронного коллайдера ВЭПП-4М ИЯФ СО РАН помогли специалистам CERN с высокой точностью измерить один из параметров X(3872). Результаты опубликованы на сайте ЦЕРН.
«Как правило, если какая-то частица открыта, то уже через пару лет у специалистов появляется понимание, что она из себя представляет. Исследование X(3872) уникально в том смысле, что на протяжении уже семнадцати лет с ее открытия у нас все еще нет представления о ее внутренней структуре, – рассказал сотрудник коллаборации LHCb, старший научный сотрудник Института теоретической и экспериментальной физики им. А.И. Алиханова НИЦ «Курчатовский институт» (ИТЭФ), кандидат физико-математических наук Иван Беляев. – Нам были известны лишь ее довольно необычные свойства. Во-первых, при большой массе X(3872) ее ширина настолько маленькая, что мы практически не видели ее, а, во-вторых, ее масса совпадает с суммой масс двух других частиц – D0 и D*0 (D-ноль-мезон и возбужденный D-ноль-мезон)».
Частица X(3872) очень интересна специалистам. Статья, в которой сообщалось об открытии этого состояния, высокоцитируемая, на нее дается свыше 1700 ссылок. Это самая цитируемая работа эксперимента Belle. При этом для подобных экспериментальных работ уже 500 ссылок считается рекордом.
«Гипотез о природе частицы X(3872) довольно много, но основных три, – рассказал главный научный сотрудник ИЯФ СО РАН, участник коллаборации LHCb, доктор физико-математических наук Семен Эйдельман. – Например, гипотеза тетракварка предполагает, что частица состоит из c кварка и анти-c кварка, а также пары легких кварка и антикварка (u или d). Другая гипотеза описывает X(3872) как молекулу. Третья гипотеза, которую выдвинул выдающийся российский и американский физик-теоретик Михаил Волошин (Университет Миннесоты), называется адрочармоний – состояние, в центре которого связанные c и анти c кварки, а вокруг них облако легких пи-мезонов, то есть совокупность легкого адрона и чармония». Семен Эйдельман пояснил, что сегодня физическое сообщество склоняется к мнению, что X(3872) – это и обычное связанное состояние c кварка и анти c кварка, и молекула одновременно.