На чем основаны спутниковый и геодезический способы определения положения опорных пунктов
| Из за большого объема этот материал размещен на нескольких страницах: 1 2 3 4 5 6 7 8 9 |
1.1. Введение. Содержание курса. Отчетность. Рекомендуемая литература.
В связи с этим получивший подготовку по направлению 552300 – Геодезия должен твердо знать все особенности высокоточных измерений, основанных на использовании традиционных методов, так и глобальных спутниковых навигационных систем (ГНСС), уметь правильно организовывать и использовать измерения для создания государственной геодезической сети.
Вид итогового контроля: Экзамен.
1. Антонович спутниковых радионавигационных систем в геодезии (том 2). – М.: Картгеоцентр; Новосибирск: Наука. – 2006. – 360 с
2. Морозов сфероидической геодезии. М. Недра, 1979 г.
3. Пеллинен геодезия (Теоретическая геодезия). М. Недра, 1978 г.
4. Практикум по высшей геодезии (под редакцией ).М. Недра,1982
6. Яковлев геодезия. М.: Недра, 1989 г.
7. Красовский сочинения. тт. I-IV. М. Недра,1955 г.
10. Основные положения о государственной геодезической сети России. М. 2004 г.
ГГС включает в себя также пункты с постоянно действующими наземными станциями спутникового автономного определения координат на основе использования спутниковых навигационных систем с целью обеспечения возможностей определения координат потребителями в режиме, близком к реальному времени.
ГГС предназначена для решения следующих основных задач, имеющих хозяйственное, научное и оборонное значение:
· установление и распространение единой государственной системы геодезических координат на всей территории страны и поддержание ее на уровне современных и перспективных требований;
· геодезическое обеспечение картографирования территории России и акваторий окружающих ее морей;
· геодезическое обеспечение изучения земельных ресурсов и землепользования, кадастра, строительства, разведки и освоения природных ресурсов;
· обеспечение исходными геодезическими данными средств наземной, морской и аэрокосмической навигации аэрокосмического мониторинга природной и техногенной сред;
· изучение поверхности и гравитационного поля Земли и их изменений во времени;
· изучение геодинамических явлений;
· метрологическое обеспечение высокоточных технических средств определения местоположения и ориентирования.
Наряду с ГГС созданы государственные нивелирная и гравиметрическая сети, а также геодезические сети специального назначения.
1.2. Структура и точность государственной геодезической сети по состоянию на 1995 год
ГГС, созданная по состоянию на 1995 года, объединяет в одно целое:
Пункты указанных построений совмещены или имеют между собой надежные геодезические связи.
Из всего состава глобальной космической геодезической сети в ГГС по состоянию на 1995 год включены данные о 26 стационарных астрономо-геодезических пунктах, расположенных в границах АГС.
Доплеровская геодезическая сеть представлена 131 пунктом, взаимное положение и координаты которых определены по доплеровским наблюдениям ИСЗ системы Транзит. Точность определения взаимного положения пунктов при среднем расстоянии между пунктами 500. 700 км характеризуется средними квадратическими ошибками, равными 0,4. 0,6 м.
Астрономо-геодезическая сеть состоит из 164306 пунктов и включает в себя:
• ряды триангуляции 1 класса, сети триангуляции и полигонометрии 1 и 2 классов, развитые в соответствии с нормативными документами;
• траверсы полигонометрии 1 класса, базисы космической триангуляции большой протяженности, проложенные в соответствии со специальными техническими указаниями.
Полученные из уравнивания средние квадратические ошибки измеренных углов на пунктах АГС 1 и 2 классов равны 0,74″ и 1,06″ соответственно.
Астрономо-геодезическая сеть 1 и 2 классов содержит 3,6 тысячи геодезических азимутов, определенных из астрономических наблюдений, и 2,8 тысячи базисных сторон, расположенных через-170. 200 км.
Точность выполненных в АГС астрономических определений координат характеризуется следующими средними квадратическими ошибками:
Средние квадратические ошибки измерений астрономических азимутов и базисов, полученные по результатам уравнивания, соответственно равны 1,27″ и 1:
Точность определения взаимного планового положения пунктов, полученных в результате выполненного в 1991 году общего уравнивания АГС как свободной сети, характеризуется в собственной системе координат средними квадратическими ошибками:
• 0,02. 0,04 м для смежных пунктов,
• 0,25. 0,80 м при расстояниях от 500 до 9 000 км.
Высоты квазигеоида над референц-эллипсоидом Красовского определены методом астрономо-гравиметрического нивелирования.
Сеть линий астрономо-гравиметрического нивелирования покрывает всю территорию страны и образует 909 замкнутых полигонов, включающих 2897 астрономических пунктов. При вычислениях превышений квазигеоида использованы данные гравиметрических съемок масштаба 1:1 и крупнее.
Точность определения превышений высот квазигеоида характеризуется средними квадратическими ошибками:
• 0,06. 0.09 м при расстояниях 10. 20 км,
• 0,3. 0,5 м при расстоянии около 1000 км.
Геодезические сети сгущения 3 и 4 классов включают в себя около 300 тысяч пунктов. Эти сети созданы методами триангуляции, полигонометрии и трилатерации в соответствии с «Основными положениями о построении государственной геодезической сети СССР», 1954 и 1961 г. г.
Плотность пунктов ГТС 1, 2, 3 и 4 классов, как правило, составляет не менее одного пункта на 50 кв. км.
На пунктах геодезических сетей 1,2,3 и 4 классов в соответствии с “Инструкцией о построении государственной геодезической сети Союза ССР”, М., Недра, 1966 г. определены по два ориентирных пункта с подземными центрами.
Нормальные высоты верхних марок подземных центров пунктов ГГС определены из геометрического или тригонометрического нивелирования.
Существующая плотность ГГС при условии применения современных спутниковых и аэросъемочных технологий обеспечивает решение задач картографирования и обновления карт всего масштабного ряда до 1:500 для городов и 1:2 000 для остальной территории.
1.31. Основные принципы организации геодезических измерений
В теоретических исследованиях и практике геодезических работ особое внимание уделяется определению взаимного положения точек, как в плановом отношении, так и по высоте. Многолетний опыт выполнения такого рода работ позволил выработать основные принципиальные положения, которые следует неукоснительно соблюдать при организации геодезических измерений. Это позволяет свести к минимуму неизбежные ошибки, не допустить накопления погрешностей при переходе от точки к точке, полностью избавиться от грубых промахов. Такими принципами являются:
переход «от общего к частному»;
систематический контроль всех видов работ.
Принцип систематического контроля требует так организовать геодезические работы, чтобы на всех их стадиях и этапах каждый результат измерений, вычислений и построений был бы надежно и неоднократно проконтролирован.
Геодезические сети представляют собой систему точек, определенным образом размещенных и закрепленных на местности. Положение этих точек в результате выполнения геодезических измерений и вычислений должно быть найдено в единой системе координат и высот. Геодезические сети, для точек которых получены только координаты x,y или только высоты Н, называют плановыми или высотными. Если пункты, закрепленные на местности, имеют все три координаты x, y, H, то образующие их геодезические сети называют планово-высотными. В зависимости от роли в общей системе создания геодезической основы на данной территории, точности, назначения и густоты геодезической сети в соответствии с современной классификацией делят на государственные геодезические, сгущения, специальные и съёмочные.
Государственная геодезическая сеть представляет собой общегосударственную главную геодезическую основу. В тех местах, где плотность пунктов главной геодезической основы недостаточна для выполнения тех или иных геодезических работ, сети сгущения. Специальные геодезические сети развивают в связи со строительством инженерных сооружений или проведением каких-либо других работ, предъявляющих к геодезическому обеспечению особые требования. Съёмочные геодезические сети представляют собой систему пунктов, непосредственно с которых выполняют съёмку местности, перенесения в натуру проекта сооружения, различные контрольные измерения и т. п. По этой причине съёмочные сети называют рабочей геодезической основой.
Кроме перечисленных выше способов классификации, геодезические сети подразделяются в зависимости от способа их построения.
1.3.2. Способы определения положений опорных пунктов
Астрономический способ заключается в определении астрономических координат j, l, от которых переходят к геодезическим координатам B,L путем наблюдения небесных светил. По результатам астрономических наблюдений определяют также геодезические азимуты А направлений на пункты. Кроме того, азимуты могут быть получены с помощью гирокомпасов и гиротеодолитов. В дальнейшем от геодезических координат можно перейти к плоским координатам x,y а от геодезического азимута – к дирекционному углу а.
(1)
(2)
Недостаток – сравнительно невысокая точность. Например, СКП для широты 0.3”, что соответствует примерно 10 м на местности. Еще один недостаток, особенно при гироопределениях, необходимо учитывать уклонения отвесных линий.
Геодезический способ состоит в том, что из астрономических определений находят прямоугольные координаты только отдельных (исходных) пунктов системы. Остальные пункты опорной сети связывают с исходным путем выполнения на земной поверхности измерений сторон и углов геометрических фигур, вершинами которых являются опорные пункты. Такая схема ограничивает накопление погрешностей, обеспечивает надежный контроль измерений, позволяет выполнять независимо геодезические работы на различных участках. Этот метод является основным на территории нашей страны. Исключением являются горные и арктические районы, где астрономический метод предпочтительнее.
Спутниковый способ основан на определении координат точек из обработки наблюдений ИСЗ. Применяемые в настоящее время системы ГЛОНАСС и GPS (ГНСС) позволяют в любой момент времени и в любом месте земного шара определять координаты точек с погрешностями до нескольких сантиметров.
В соответствии с принципом «от общего к частному» вся опорная сеть подразделяется на классы, и ее построение осуществляется несколькими ступенями: от более высшего к низшему, от более крупных построений к более мелким и менее точным. Пункты высших классов располагают на больших (до нескольких десятков и тысяч километров) расстояниях, а затем последовательно сгущают путем развития между ними сетей более низких классов. Это позволяет в сжатые сроки и с высокой точностью распространять единую систему координат на всю территорию страны.
Различают плановые геодезические сети, пункты которых имеют прямоугольные координаты x,y в общегосударственной системе, и высотные сети, в которых высоты определены в Балтийской системе высот.
Геодезические сети принято делить на следующие виды:
1. Государственная геодезическая сеть.
2. Геодезические сети сгущения.
3. Съемочные геодезические сети.
Густота геодезических сетей и необходимая точность определяются характером научных и инженерно-технических задач, решаемых на этой основе. Поэтому для обеспечения требуемой точности построения геодезических сетей угловые, линейные и высотные измерения должны выполняться соответствующими приборами и методами.
Фотограмметрический способ. Заключается в определении положений с использованием аэрокосмических снимков, радарных съемок. Для построения опорных сетей не используется
Известно, что для решения треугольника достаточно измерить в нём, кроме стороны, два угла. Однако при построении триангуляции в каждом треугольнике измеряют все три угла. Это позволяет проконтролировать результаты угловых измерений и, кроме того, в итоге специальных уравнительных вычислений несколько повысить точность конечного результата. С этой же целью измеряют длину не одной стороны ряда или сети, а двух и более. В случае необходимости в схеме триангуляции предусматривают перекрытие треугольников, что также улучшает качество построения.
После того, как будут вычислены длины стороны треугольников, находят координаты их вершин. Для этого в качестве исходных данных необходимо иметь координаты одной из точек и дирекционный угол ( азимут ) одной из сторон сети. Затем по этим сторонам последовательно решают прямые геодезические задачи и таким образом определяют плановое положение вершин сети.
Плановое положение точки определяется двумя её координатами X, Y, поэтому для реализации любой засечки необходимо измерить, как минимум, две независимые величины ( углы, расстояния ), каким-либо образом связывающие определяемую точку с исходными пунктами.
Наибольшее распространение в практике создания геодезической плановой основы получили прямая и обратная ( боковая )угловые засечки, а также задача Потенота ( определение положения четвёртой точки по трём данным ).
Сущность прямой угловой засечки состоит в том, что искомую точку находят как пересечение двух направлений и с твёрдых ( исходных ) пунктов и. Направления на определяемую точку задают, измерив горизонтальные углы и с исходной стороной.
Тема 2. Новейшие методы построения: спутниковые, основанные на использовании глобальных спутниковых навигационных систем, лазерной локации ИСЗ, длиннобазисной радиоинтерферометрии и др. ФАГС, ВГС, СГС. Система «Квазар».
2.1. Основные принципы развития государственной геодезической сети
Задание, поддержание и воспроизведение системы координат на уровне требований, обеспечивающих решение фундаментальных перспективных задач в области геодезии, геофизики, геодинамики и космонавтики, обуславливает необходимость создания геодезической сети на качественно новом, более высоком, уровне точности.
Государственная геодезическая сеть, создаваемая в соответствии с настоящими «Основными положениями», структурно формируется по принципу перехода от общего к частному и включает в себя геодезические построения различных классов точности:
• высокоточную геодезическую сеть (ВГС),
• спутниковую геодезическую сеть 1 класса (СГС-1).
На основе новых высокоточных пунктов спутниковой сети создаются постоянно действующие дифференциальные станции с целью обеспечения возможностей определения координат потребителями в режиме близком к реальному времени.
По мере развития сетей ФАГС, ВГС и СГС-1 выполняется уравнивание ГГС и уточняются параметры взаимного ориентирования геоцентрической системы координат и системы геодезических координат СК-95.
2.2. Новейшие методы геодезии: спутниковые, основанные на использовании глобальных спутниковых навигационных систем, лазерной локации ИСЗ, длиннобазисной радиоинтерферометрии и др.
2.2.1. Определение координат с применением спутниковых технологий
Определение координат по спутникам навигационных систем выполняются абсолютными, дифференциальными и относительными методами. В абсолютном методе координаты поучаются одним приемником в системе координат, носителями которой являются станции подсистемы контроля и управления и, следовательно, спутники навигационной системы. При этом реализуется метод засечки положения приемника от известных положений космических аппаратов (КА). Часто это метод называют также точечным позиционированием.
В дифференциальном и относительном методе наблюдения производят не менее двух приемников, один из которых располагается на опорном пункте с известными координатами, а второй совмещен с определяемым объектом. В дифференциальном методе по результатам наблюдений на опорном пункте отыскиваются поправки к соответствующим параметрам наблюдений или координатам для неизвестного пункта. Этот метод обеспечивает мгновенные решения, обычно называемые как решения в реальном времени, в которых достигается улучшенная точность по отношению к опорной станции. В отличие от дифференциального метода, в относительном методе наблюдения, сделанные одновременно на опорном и определяемом пунктах, обрабатываются совместно. Это значительно повышает точность решений, но исключает мгновенные решения. В относительном методе определяется вектор, соединяющий опорный и определяемый пункты, называемый вектором базовой линии.
Наблюдения в реальном времени (абсолютные или дифференциальные) предполагают, что полученное положение будет доступно непосредственно на месте позиционирования, пока наблюдатель находится на станции. Пост-обработка предполагает получение результатов после ухода с пункта наблюдений.
В каждом из трех указанных методов определений координат возможны измерения как по кодовым псевдодальностям, так и по фазе несущей. Точность кодовых дальностей имеет метровый уровень, в то время как точность фазовых измерений лежит в миллиметровом диапазоне. Точность кодовых дальностей, однако, можно улучшить, если использовать метод узкого коррелятора или методику сглаживания по фазе. В отличие от фаз несущих колебаний, кодовые дальности фактически не содержат неоднозначностей. Это делает их невосприимчивыми к потерям счета циклов (то есть изменениям неоднозначностей фазы) и в некоторой степени к препятствиям на пункте. Решающим моментом в спутниковых фазовых измерениях является разрешение неоднозначностей фазы.
Точность абсолютного метода позиционирования по кодовым GPS измерениям определяется возможностями Службы стандартного позиционирования (SPS) или Службы точного позиционирования (PPS). При выключенном режиме выборочной доступности SA гражданским пользователям стандартное GPS позиционирование обеспечивает в 95% случаев точность 15 м. Возможности абсолютного метода по измерениям фазы ограничиваются точностью эфемерид спутников. Использовать бортовые эфемериды спутников при их точности в несколько метров нецелесообразно, а точные апостериорные эфемериды появляются с большой задержкой. Поэтому абсолютное позиционирование по фазе несущей применяется редко.
Таблица 9.1. Характеристики точности дифференциального и относительного методов определения координат (по книге [Botton et al. 1997]).
Геодезическая основа кадастра. Использование геодезического метода и метода спутниковых геодезических измерений
Автор: Дехканова Н.Н., к.э.н., начальник отдела геодезии и картографии Управления Федеральной службы государственной регистрации, кадастра и картографии по Кировской области.
Сегодня мы будем говорить о геодезической основе кадастра и рассмотрим два из пяти методов, использование которых законодательно установлено при определении координат характерных точек границ земельного участка, а также контура здания, сооружения или объекта незавершённого строительства на земельном участке. Это геодезический метод и метод спутниковых геодезических измерений (определений). Разговор коснётся заполнения реквизитов:
Законодательную основу сегодняшней темы составляют положения 15 документов:
Геодезический метод и метод спутниковых геодезических измерений при определении координат точек – это два метода, которые требуют наличия определённых знаний, связанных с непосредственными измерениями на местности с использованием соответствующих средств измерения.
Хочется вернуться к выступлению от 03.02.2016, где мной было подчёркнуто следующее:
«Особенно важно понять, что при оформления межевых/технических планов кадастровые инженеры должны хотя бы в общем представлять технологию производства геодезических измерений на конкретном объекте, если они не являются непосредственными исполнителями геодезических работ. В противном случае факт внесения некачественных, а порой и недостоверных или даже противоречивых сведений неизбежен. Следовательно, для внесения необходимых сведений исполнитель геодезических измерений обязан представить кадастровому инженеру такой пакет документов, который будет достаточным для внесения обязательной информации в межевой/технический план.
Обратимся к статье 6 Закона о кадастре.
В соответствии с частью 1 статьи 6 геодезической основой кадастра являются государственная геодезическая сеть и опорные межевые сети.
В соответствии с частью 3 статьи 6 сведения о геодезической основе кадастра вносятся в кадастр на основании подготовленных в результате выполнения указанных работ документов.
Требования по внесению сведений о геодезической основе кадастра установлены:
При выполнении геодезических работ для целей постановки на учёт земельных участков, зданий, сооружений, объектов незавершённого строительства геодезические измерения осуществляются на основе одних и тех же требований действующего законодательства, поэтому снова рассмотрим применение соответствующих требований законодательства на примере оформления межевого плана, как наиболее сложного.
Пункт 34 Приказа №412 устанавливает обязанность внесения в реквизите «2» раздела «Исходные данные»:
Государственная геодезическая сеть, опорная межевая сеть. В чём их отличие? Что они собой представляют? Для кого-то ответы на эти вопросы не вызывают затруднений, однако не для всех кадастровых инженеров, да и порой самих исполнителей геодезических работ.
Опорным пунктом называется закреплённая на местности точка, координаты которой известны из геодезических измерений с достаточной точностью.
Совокупность опорных пунктов, равномерно расположенных по всей территории и служащих основой для съёмок, называется опорной сетью.
Геодезическая сеть, используемая для обеспечения топосъёмок, называется съёмочным обоснованием. Это съёмочные сети и сети более высокого порядка, расположенные на участке съёмки.
Геодезическая опорная сеть представляет собой совокупность закреплённых на земной поверхности пунктов, положение которых определено в единой системе координат. Положение опорных пунктов на местности может определяться астрономическим, геодезическим, спутниковым (космическим) и другими способами.
Согласно принципу перехода «от общего к частному» вся опорная сеть подразделяется на классы, и построение её осуществляется несколькими ступенями: от сетей более высокого класса к сетям низшего, от крупных и точных геометрических построений к более мелким и менее точным. Пункты высших классов располагаются на больших (до нескольких десятков километров) расстояниях друг от друга и затем последовательно сгущаются путём развития между ними сетей более низких классов.
Геодезические сети принято подразделять на следующие виды:
Густота геодезических сетей и необходимая точность нахождения планового положения пункта определяются характером инженерно-технических задач, решаемых на этой основе.
Различают плановые геодезические сети, в которых для каждого пункта определяют прямоугольные координаты (х и у) в общегосударственной системе, и высотные, в которых высоты пунктов определяют в Балтийской системе высот.
Что же такое Государственная геодезическая сеть (далее сокращённо будем называть ГГС)? Чем она отличается от опорной межевой сети (далее – сокращённо ОМС)?
ГГС страны является главной геодезической основой топографических съёмок всех масштабов.
В соответствии с пунктом 2.2.1 «Основных положений о государственной геодезической сети» (далее – Основные положения о ГГС): ГГС, созданная по состоянию на 1995 год, объединяет в одно целое:
Пункты ГГС имеют между собой надёжные геодезические связи.
В соответствии с пунктом 3.1.3. Основных положений о ГГС:
Государственная геодезическая сеть структурно формируется по принципу перехода от общего к частному и включает в себя геодезические построения различных классов точности:
В указанную систему построений вписываются также существующие сети триангуляции и полигонометрии 1. 4 классов.
На основе новых высокоточных пунктов спутниковой сети создаются постоянно действующие дифференциальные станции с целью обеспечения возможностей определения координат потребителями в режиме, близком к реальному времени.
Важно! Пунктом 3.1.4. Основных положений о ГГС предусмотрено:
По мере развития сетей ФАГС, ВГС и СГС-1 выполняется уравнивание ГГС и уточняются параметры взаимного ориентирования геоцентрической системы координат и системы геодезических координат СК-95.
На сегодняшний день для нас с вами представляют наибольший интерес астрономо-геодезическая сеть и геодезические сети сгущения.
В соответствии с Основными положениями о ГГС:
2.2.4. Астрономо-геодезическая сеть состоит из 164306 пунктов и включает в себя ряды триангуляции 1 класса, сети триангуляции и полигонометрии 1 и 2 классов.
2.2.4.1. Астрономо-геодезическая сеть 1 и 2 классов содержит 3,6 тысячи геодезических азимутов, определенных из астрономических наблюдений, и 2,8 тысячи базисных сторон, расположенных через 170. 200 км.
2.2.5. Геодезические сети сгущения 3 и 4 классов включают в себя около 300 тысяч пунктов. Эти сети созданы методами триангуляции, полигонометрии и трилатерации
2.2.6. Плотность пунктов ГГС 1, 2, 3 и 4 классов, как правило, составляет не менее одного пункта на 50 кв. км.
2.2.7. На пунктах геодезических сетей 1, 2, 3 и 4 классов определены по два ориентирных пункта с подземными центрами.
Плановые геодезические сети создают методами триангуляции, трилатерации, полигонометрии и их сочетаниями.
Триангуляция заключается в построении на местности систем треугольников, в которых измеряются все углы и длины некоторых базисных сторон (рис. 1). Длины других сторон рассчитываются по известным формулам тригонометрии.
Рисунок 1. Триангуляция
Триангуляция 1-го класса создаётся в виде астрономо-геодезической сети и призвана обеспечить решение основных научных задач, связанных с определением формы и размеров Земли. Она является главной основой развития сетей последующих классов и служит для распространения единой системы координат на всю территорию страны. Её построение осуществляют с наивысшей точностью, которую могут обеспечить современные приборы при тщательно продуманной методике измерений.
Сети триангуляции 1-го класса представляют собой ряды треугольников, близких к равносторонним, располагаемых вдоль меридианов и параллелей и отстоящих друг от друга на 200км. Пересекаясь между собой, ряды треугольников образуют замкнутые полигоны периметром 800 – 1000км (рис. 1).
Триангуляция 2-го класса – сплошные сети треугольников, заполняющих полигоны триангуляции 1-го класса. Она является опорной сетью, служащей для развития сетей последующего сгущения и геодезического обоснования всех топографических съёмок.
Триангуляция 3-го и 4-го классов является дальнейшим сгущением ГГС, служит для обоснования топографических съёмок крупного масштаба и представляет собой вставки жёстких систем или отдельных пунктов в сети старших классов.
Основные характеристики триангуляционной сети 1 – 4 классов
Допустимая средняя квадратическая погрешность измерения углов