На что влияет ram
На что влияет оперативная память в компьютере — конкретно
Здравствуйте мои друзья.
Тема железа для компа всегда вызывает интерес у пользователей. Особенно когда возникает дискуссия по поводу важности отдельных компонентов. Практически каждый в свое время задавался вопросом, на что влияет оперативная память в компьютере? Опытные юзеры знают ответ на него, а вот для начинающих эта информация будет не только не лишней, но и весьма полезной.
Для начала нужно получить полное представление, что такое оперативная память, какие у нее главные параметры и какие у нее функции. Итак, предмет нашего интереса еще именуется ОЗУ, RAM или оперативка. Это энергозависимая память, информация в которой не сохраняется при отсутствии электропитания.
Она представляет собой небольшую планку-плату, на которой размещено несколько чипов-микросхем DDR SDRAM (непосредственно запоминающие устройства) и имеются контакты для монтажа в специальный разъем материнской платы.
Плотность полупроводниковых логических элементов на чипе и количество самих микросхем на планке определяет общий объем памяти, измеряемый в гигабайтах. Информация на них записывается и считывается с определенной скоростью потактово (дважды за один такт).
Это и есть основные параметры, которые постоянно улучшались в разных поколениях ОЗУ. Давайте рассмотрим последние три:
Прогресс налицо, однако, стоит понимать. Что для каждого поколения существует свой тип разъема и заменить память старую на новую у вас не получится.
Незаменимый помощник процессора
Теперь посмотрим, для чего оперативка нужна компьютеру и как она работает. Я начну издалека. Представьте, что вы инженер, работающий над определенным проектом. У вас есть книжный шкаф с документацией, справочниками и книгами по разным направлениям. Но чтобы постоянно не ходить к нему вы поместили у себя на столе все те источники, к которым вы обращаетесь. По сути, стол – это ваша оперативная память, а шкаф – жесткий диск со всей информацией.
Точно так и в компьютере, процессор оперирует данными и командами, записанными в программах. Чтобы не обращаться каждый раз к относительно медленному HDD, гораздо эффективнее загрузить все, что нужно во временную, но быструю память каковой является ОЗУ. Естественно, объем данных может быть слишком большой. Тогда вместимости оперативки не хватает и процессор вынужден снова обращаться к винчестеру и подгружать в оперативку новую информацию.
Чем быстрее взаимодействует между собой процессор и ОЗУ без участия жесткого диска, тем производительнее работает компьютер. Здесь так же имеет значение влияние частоты RAM и ее соответствие с аналогичным параметром CPU: идеально, если они высокие и совпадают.
Если нет, операции будут выполняться с наименьшей частотой.
В принципе можно сказать так: оперативная память влияет на производительность компьютера, чем ее больше – тем быстрее будет оперировать данными процессор. А если точнее то у него будет запас для вместимости этих данных.
Выходит, можно зарядить системник оперативкой по максимуму и получать удовольствие от шустрой работы ПК? Или не?
Как нарастить мощь ПК с помощью ОЗУ?
Ну-у-у, почти так оно и есть. Но опять-таки везде свои нюансы и о них я хочу сказать отдельно:
Приятно говорить о том, насколько лучше станет работать ваш ПК, если в нем будет много оперативной памяти. Можно выставить в играх максимальные настройки и кайфовать от процесса. Но давайте посмотрим, что бывает при недостаточном объеме ОЗУ.
Когда ОЗУ- слабое звено
Лучше всего это видно на таких хорошо знакомых многим приложениях как фоторедактор Adobe Photoshop и браузер Google Chrome. Загрузите изображение со множеством слоев или откройте с десяток вкладок. И вы почувствуете, как ваш комп начнет тормозить.
Убедиться в том, что всему виной оперативка можно, запустив диспетчер задач (Ctirl + Alt +Del) и перейдя во вкладку «Производительность», где вы увидите загруженность ОЗУ. Уточнить, что же съедает вашу память можно во вкладке «Процессы». Здесь же можно отключить самые ресурсоёмкие программы.
В некоторых случаях небольшой объем RAM памяти не столь критичен. Если видеокарта мощная, то она возьмет на себя большую часть работы, разгрузив ОЗУ и процессор. Но это и если это всё дело правильно настроить. Это отдельная тема, вдаваться в тонкости здесь не будем.
Мы подошли к ключевому ответу на вопрос: на что влияет оперативная память в компьютере? А именно.
Оперативная память влияет на скорость работы вашего компа и является как бы ресурсом по производительности (запасом). Но влияет не на прямую, а косвенно. Если её мало — то машина будет медленнее работать при высоких нагрузках (тяжёлые программы типа фотошопа или требовательные игры). Вспоминая аналогию, много места на столе это и есть большой объём оперативной памяти.
Частота же это прямой показатель скорости работы с загруженными данными (с бумагами на столе). Чем она быстрее — тем вы быстрее можете обрабатывать и перемещать эти бумаги на столе.
Бонус: не только производительность
Если быть слишком принципиальным, определяя, на что влияет оперативка в компьютере, то можно сказать, что она участвует в нагреве элементов корпуса. Чипы ведь тоже греются и неслучайно некоторые планки оснащаются собственным пассивным радиатором. С уменьшением вольтажа в DD3 и DD4 практически отсутствует влияние на энергопотребление системы.
Короче вы поняли саму суть да? Количество планок и общий объем ОЗУ однозначно влияет на стоимость компьютера.
Ну а куда без этого?
Пожалуй, на этом хватит обсуждать значимость оперативки для ПК. Надеюсь, что информация этой статьи поможет вам выбрать оптимальное количество памяти для своего компьютера.
До скорых встреч, мои дорогие читатели и всем удачи.
Как озу влияет на производительность в играх?
Благодаря, пожалуй, наиболее дешевому и эффективному соотношению цены и качества среди всех компонентов компьютера, ОЗУ, как правило, готово для геймеров, стремящихся улучшить технические характеристики своего игрового компьютера. Но дает ли это большое влияние? Лучше ли потратить деньги на другое устройство, и насколько оперативная память влияет на игры? Давайте разберемся.
Серийный номер оперативной памяти
Простое решение заключается в том, чтобы добавить больше оперативной памяти, но есть только столько оперативной памяти, которую вы можете добавить, прежде чем она достигнет порогового значения и будет эффективно использована. Два фактора определяют, к чему относится этот порог и как он может колебаться.
Во-первых, сколько оперативной памяти запрограммировано для конкретной игры. Если в игре используется максимум 4 ГБ, то наличие 8 ГБ ОЗУ означает, что фактически есть 4 ГБ, которые никак не исползуются.
Второй фактор заключается в том, запускаются ли приложения вместе с игрой, если таковые имеются. Мы говорим о потоковом программном обеспечении, таком как OBS, веб-браузеры, программное обеспечение для записи и любые другие программы, которые открыты одновременно с игрой.
Если никакие вторичные приложения не запущены, то требование к базовой оперативке для запущенной игры, представляет собой максимальный порог для ОЗУ, который считается стабильным.
Когда геймер запускает множество приложений в фоновом режиме (музыка, чат, потоковое программное обеспечение и т.д.), То чем больше оперативной памяти в дополнение к базовым требованиям игры, тем лучше.
Этот пункт особенно актуален для стримеров, которые запускают несколько программ для длительных сеансов трансляций, хотя другие бенефициары включают графических дизайнеров или видеоредакторов, которые хотят оставить программы, требующие ОЗУ, открытыми во время игры.
В современной игровой среде от 8 до 16 ГБ более чем достаточно для комфортного запуска подавляющего большинства игр. По мере того, как разработчики используют возможности увеличения объема ОЗУ, эта тенденция направлена увеличение в соответствии со стандартными объемами оперативки, обнаруживаемыми в ПК, которые постепенно увеличиваются с течением времени. Тесты указывают, что переход с 8 ГБ до 16 ГБ в лучшем случае незначителен, но есть много смысла в проверке вашей системы в будущем, особенно если ОЗУ дешевеет.
Также существует множество типов модулей ОЗУ, такие как DRAM, SRAM, DRAM и другие. Все они отличаются друг от друга не только размером контактной части но и специализацией.
Сколько оперативной памяти нужно для игр?
Еще раз, обновление с 4 ГБ до 16 ГБ и запуск игры, в которой используется максимум 8 ГБ, окажет незначительное, но заметное влияние, порядка нескольких кадров в секунду. Точно так же игра будет загружаться быстрее.
И наоборот, если у вас 8 ГБ ОЗУ и вы обновляете до 16 ГБ, а игра использует только 8 ГБ, тогда разница будет нулевой, или, по крайней мере, улучшение не будет заметно со стороны пользователя.
Как вы можете видеть, это постепенное снижение невероятно быстро и по сути означает тратить деньги на гигабайты, которые останутся бездействующими и нетронутыми в течение всего игрового сеанса.
Сколько тактовой частоты нужно для RAM?
Ответ очень похож; улучшение зависит от того, какой объем/скорость у вас есть, и до какой суммы вы обновляете. В большинстве случаев разница будет в несколько кадров в секунду или близка к нулю.
Все это зависит от процессора и игры. Процессоры Intel, как правило, меньше всего выигрывают от лучшей тактовой частоты ОЗУ из-за встроенной архитектуры своих чипсетов, в то время как процессоры AMD Ryzen 7 дают несколько ощутимое улучшение, приближаясь к +10 FPS в некоторых случаях и для определенных игр.
Сам графический процессор оказывает значительное влияние на степень улучшения.
В отличие от обычной оперативной памяти, чем больше VRAM у видеокарты, и чем быстрее, тем лучше игровой процесс. Не менее важны и сами графические процессоры. Современные итерации предлагают более совершенные внутренние наборы микросхем и алгоритмы, которые более эффективны при рендеринге графики.
Для повышения частоты кадров обновление графического процессора считается наиболее эффективным решением. Уже рассматривали невероятные улучшения от небрежных 20 FPS до захватывающих 100 FPS для многих игр.
Например, для сравнения, обновление GeForce GTX 950 с 1 ГБ видеопамяти на GeForce RTX 2080 с 11 ГБ повлияет на игры гораздо больше, чем переключение с 8 ГБ ОЗУ на 16 ГБ ОЗУ.
Вывод
Ответ прост: после определенного порога ОЗУ оказывает минимальное влияние на игровой процесс. Определите максимальные характеристики для выбранных вами игр и сопоставьте их с количеством оперативной памяти, и вы получите максимально возможный объем, определяемый оперативной памятью, передавая показатели производительности другим более важным компонентам, таким как графический процессор.
Рекомендуется тратить меньше на увеличение возможностей оперативной памяти вашей материнской платы/процессоров и отводить эти деньги в сторону лучшей видеокарты. Если ваш бюджет позволяет использовать отличный графический процессор наряду с 64 ГБ оперативной памяти, во что бы то ни стало, сделайте это.
Что такое тайминги и как они влияют на скорость оперативной памяти
Содержание
Содержание
Выбор оперативной памяти в игровую сборку может обернуться кошмаром, если начать разбираться в тонкостях ее работы. Требования современных игровых и рабочих задач диктуют свои условия, поэтому память — теперь чуть ли не самая важная и сложная часть в сборке компьютера. Среди многочисленных моделей нужно выбрать единственный подходящий вариант и это пугает. Причем самое сложное в этом — почему память с меньшей частотой работает быстрее и показывает больше кадров в играх, чем та, у которой частота выше. Для этого нужно разобраться, в чем все-таки измеряется скорость памяти и какие параметры влияют на нее.
Мощность компьютера измеряется величиной FLOPS, которая обозначает количество вычислительных операций за секунду. По причине того, что компьютеры могут одновременно выполнять миллионы операций, к флопсам добавляют приставку «гига».
В привычной же обстановке мы можем путать мощность и частоту, поэтому считаем производительность компьютеров не гигафлопсами, а максимальной рабочей частотой. Это проще в рядовых ситуациях, когда говорящие знают тему хорошо и соотносят мощность с герцами в уме автоматически.
В то же время, такое языковое упрощение вносит коррективы в понимание практической части вопроса. Вырывая контекст из форумов, рядовой пользователь и правда думает, что мощность памяти можно выразить в герцах. Просто потому, что гонка за частотой стала трендом среди любителей и энтузиастов. Это и мешает неопытному человеку понять, почему его высокочастотный процессор может проиграть тому, у которого на несколько сотен герц меньше. Все просто — у одного два ядра и четыре потока, а у другого четыре настоящих. И это большая разница.
Оперативная память и ее скорость
Оперативная память состоит из тысяч элементов, связанных между собой в чипах-микросхемах. Их называют банками (bank), которые хранят в себе строчки и столбцы с электрическим зарядом. Сам электрический заряд — это информация (картинки, программы, текст в буфере обмена и много чего еще). Как только системе понадобились данные, банка отдает заряд и ждет команды на заполнение новыми данными. Этим процессом руководит контроллер памяти.
Для аналогии, сравним работу оперативной памяти и работу кафе. Чипы можно представить в виде графинов с томатным соком. Каждый наполнен соком и мякотью спелых помидоров (электрический заряд, информация). В кафе приходит клиент (пользователь компьютера) и заказывает сок (запускает игру). Бармен (контроллер, тот, кто управляет банками) принимает заказ, идет на кухню (запрашивает информацию у банок), наливает сок (забирает игровые файлы) и несет гостю, а затем возвращается и заполняет графин новым соком (новой информацией о том, что запустил пользователь). Так до бесконечности.
Тайминги — качество
Работа памяти, вопреки стереотипу, измеряется не только герцами. Быстроту памяти принято измерять в наносекундах. Все элементы памяти работают в наносекундах. Чем чаще они разряжаются и заряжаются, тем быстрее пользователь получает информацию. Время, за которое банки должны отрабатывать задачи назвали одним словом — тайминг (timing — расчет времени, сроки). Чем меньше тактов (секунд) в тайминге, тем быстрее работают банки.
Такты. Если нам необходимо забраться на вершину по лестнице со 100 ступеньками, мы совершим 100 шагов. Если нам нужно забраться на вершину быстрее, можно идти через ступеньку. Это уже в два раза быстрее. А можно через две ступеньки. Это будет в три раза быстрее. Для каждого человека есть свой предел скорости. Как и для чипов — какие-то позволяют снизить тайминги, какие-то нет.
Частота — количество
Теперь, что касается частоты памяти. В работе ОЗУ частота влияет не на время, а на количество информации, которую контроллер может утащить за один подход. Например, в кафе снова приходит клиент и требует томатный сок, а еще виски со льдом и молочный коктейль. Бармен может принести сначала один напиток, потом второй, третий. Клиент ждать не хочет. Тогда бармену придется нести все сразу за один подход. Если у него нет проблем с координацией, он поставит все три напитка на поднос и выполнит требование капризного клиента.
Аналогично работает частота памяти: увеличивает ширину канала для данных и позволяет принимать или отдавать больший объем информации за один подход.
Тайминги плюс частота — скорость
Соответственно, частота и тайминги связаны между собой и задают общую скорость работы оперативной памяти. Чтобы не путаться в сложных формулах, представим работу тандема частота/тайминги в виде графического примера:
Разберем схему. На торговом центре есть два отдела с техникой. Один продает видеокарты, другой — игровые приставки. Дефицит игровой техники довел клиентов до сумасшествия, и они готовы купить видеокарту или приставку, только чтобы поиграть в новый Assassin’s Creed. Условия торговли такие: зона ожидания в отделе первого продавца позволяет обслуживать только одного клиента за раз, а второй может разместить сразу двух. Но у первого склад с видеокартами находится в два раза ближе, чем у второго с приставками. Поэтому он приносит товар быстрее, чем второй. Однако, второй продавец будет обслуживать сразу двух клиентов, хотя ему и придется ходить за товаром в два раза дальше. В таком случае, скорость работы обоих будет одинакова. А теперь представим, что склад с приставками находится на том же расстоянии, что и у первого с видеокартами. Теперь продавец консолей начнет работать в два раза быстрее первого и заберет себе большую часть прибыли. И, чем ближе склад и больше клиентов в отделе, тем быстрее он зарабатывает деньги.
Так, мы понимаем, как взаимодействует частота с таймингами в скорости работы памяти.
Соответственно, чем меньше метров проходит контроллер до банок с электрическим зарядом, тем быстрее пользователь получает информацию. Если частота памяти позволяет доставить больше информации при том же расстоянии, то скорость памяти возрастает. Если частота памяти тянет за собой увеличение расстояния до банок (высокие тайминги), то общая скорость работы памяти упадет.
Сравнить скорость разных модулей ОЗУ в наносекундах можно с помощью формулы: тайминг*2000/частоту памяти. Так, ОЗУ с частотой 3600 и таймингами CL14 будет работать со скоростью 14*2000/3600 = 7,8 нс. А 4000 на CL16 покажет ровно 8 нс. Выходит, что оба варианта примерно одинаковы по скорости, но второй предпочтительнее из-за большей пропускной способности. В то же время, если взять память с частотой 4000 при CL14, то это будет уже 7 нс. При этом пропускная способность станет еще выше, а время доставки информации снизится на 1 нс.
Строение чипа памяти и тайминги
В теории, оперативная память имеет скорость в наносекундах и мегабайтах в секунду. Однако, на практике существует не один десяток таймингов, и каждый задает время на определенную работу в микросхеме.
Они делятся на первичные, вторичные и третичные. В основном, для маркетинговых целей используется группа первичных таймингов. Их можно встретить в характеристиках модулей. Например:
Вот, как выглядят тайминги на самом деле:
Их намного больше и каждый за что-то отвечает. Здесь бармен с томатным соком не поможет, но попробуем разобраться в таймингах максимально просто.
Схематика чипов
Микросхемы памяти можно представить в виде поля для игры в морской бой или так:
В самом упрощенном виде иерархия чипа это: Rank — Bank — Row — Column. В ранках (рангах) хранятся банки. Банки состоят из строк (row) и столбцов (column). Чтобы найти информацию, контроллеру необходимо иметь координаты точки на пересечении строк и столбцов. По запросу, он активирует нужные строки и находит информацию. Скорость такой работы зависит от таймингов.
Первичные
CAS Latency (tCL) — главный тайминг в работе памяти. Указывает время между командой на чтение/запись информации и началом ее выполнения.
RAS to CAS Delay (tRCD) — время активации строки.
Row Precharge Time (tRP) — прежде чем перейти к следующей строке в этом же банке, предыдущую необходимо зарядить и закрыть. Тайминг обозначает время, за которое контроллер должен это сделать.
Row Active Time (tRAS) — минимальное время, которое дается контроллеру для работы со строкой (время, в течение которого она может быть открыта для чтения или записи), после чего она закроется.
Command Rate (CR) — время до активации новой строки.
Вторичные
Второстепенные тайминги не так сильно влияют на производительность, за исключением пары штук. Однако, их неправильная настройка может влиять на стабильность памяти.
Write Recovery (tWR) — время, необходимое для окончания записи данных и подачи команды на перезарядку строки.
Refresh Cycle (tRFC) — период времени, когда банки памяти активно перезаряжаются после работы. Чем ниже тайминг, тем быстрее память перезарядится.
Row Activation to Row Activation delay (tRRD) — время между активацией разных строк банков в пределах одного чипа памяти.
Write to Read delay (tWTR) — минимальное время для перехода от чтения к записи.
Read to Precharge (tRTP) — минимальное время между чтением данных и перезарядкой.
Four bank Activation Window (tFAW) — минимальное время между первой и пятой командой на активацию строки, выполненных подряд.
Write Latency (tCWL) — время между командой на запись и самой записью.
Refresh Interval (tREFI) — чтобы банки памяти работали без ошибок, их необходимо перезаряжать после каждого обращения. Но, можно заставить их работать дольше без отдыха, а перезарядку отложить на потом. Этот тайминг определяет количество времени, которое банки памяти могут работать без перезарядки. За ним следует tRFC — время, которое необходимо памяти, чтобы зарядиться.
Третичные
Эти тайминги отвечают за пропускную способность памяти в МБ/с, как это делает частота в герцах.
Эти отвечают за скорость чтения:
Эти отвечают за скорость копирования в памяти (tWTR):
Скорость чтения после записи (tRTP):
А эти влияют на скорость записи:
Скорость памяти во времени
Итак, мы разобрались, что задача хорошей подсистемы памяти не только в хранении и копировании данных, но и в быстрой доставке этих данных процессору (пользователю). Будь у компьютера хоть тысяча гигабайт оперативной памяти, но с очень высокими таймингами и низкой частотой работы, по скорости получится уровень неплохого SSD-накопителя. Но это в теории. На самом деле, любая доступная память на рынке как минимум соответствует требованиям JEDEC. А это организация, которая знает, как должна работать память, и делает это стандартом для всех. Аналогично ГОСТу для колбасы или сгущенки.
Стандарты JEDEC демократичны и современные игровые системы редко работают на таких низких настройках. Производители оставляют запас прочности для чипов памяти, чтобы компании, которые выпускают готовые планки оперативной памяти могли немного «раздушить» железо с помощью разгона. Так, появились заводские профили разгона XMP для Intel и DOHCP для AMD. Это «официальный» разгон, который даже покрывается гарантией производителя.
Профили разгона включают в себя информацию о максимальной частоте и минимальных для нее таймингах. Так, в характеристиках часто пишут именно возможности работы памяти в XMP режимах. Например, частоте 3600 МГц и CL16. Чаще всего указывают самый первый тайминг как главный.
Чем выше частота и ниже тайминги, тем круче память и выше производительность всей системы.
Так работает оперативная память с момента ее создания и до нашего времени.