на каком уровне организации осуществляется хранение передача и запись генетической информации

Биология. 10 класс

Генетическая информация в клетке

Хранение, передача и реализация наследственной информации в клетке. Ген. Геном. Реакции матричного синтеза

Необходимо запомнить

На Земле живёт около 7 млрд людей. Если не считать 25–30 млн пар однояйцовых близнецов, то генетически все люди разные: каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах – наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках – следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода, который универсален для всех организмов. Каждая аминокислота кодируется тремя нуклеотидами (триплетом) ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д. Аминокислот, входящих в состав белков – 20, а возможностей для комбинаций четырёх нуклеотидов в группы по три – 64, поэтому одна аминокислота может кодироваться несколькими триплетами. Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

ДНК непосредственно не принимает участия в биосинтезе белка. Информация с ДНК сначала копируется на иРНК (транскрипция), а затем на рибосомах переводится в последовательность аминокислот в молекулах синтезируемого белка (процесс трансляции).

В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами: кодоны иРНК комплементарны триплетам ДНК: триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.

Таким образом, генетический код – единая система записи наследственной информации в молекулах нуклеиновых кислот в виде последовательности нуклеотидов. Генетический код основан на использовании алфавита, состоящего всего из четырёх букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т (У), Г, Ц.

Основные свойства генетического кода:

1. Генетический код триплетён. Триплет (кодон) – последовательность трёх нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав белков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом. Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказывается равным трём. (В этом случае число возможных триплетов нуклеотидов составляет 43 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов – 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА – являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (начала) синтеза.

3. Одновременно с избыточностью коду присуще свойство однозначности: каждому кодону соответствует только одна определённая аминокислота.

4. Код коллинеарен, т. е. последовательность нуклеотидов в гене точно соответствует последовательности аминокислот в белке.

5. Генетический код неперекрываем. Это значит, что процесс считывания не допускает возможности перекрывания кодонов (триплетов).

6. Генетический код универсален, т. е. одинаковые для всех живых организмов вне зависимости от уровня организации и систематического положения этих организмов.

7. Генетический код содержит «знаки препинания» – стоп-кодоны. Начавшись на определённом кодоне, считывание идёт непрерывно триплет за триплетом вплоть до стоп-сигналов (терминирующих кодонов).

Источник

На каком уровне организации осуществляется хранение передача и запись генетической информации

на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть фото на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть картинку на каком уровне организации осуществляется хранение передача и запись генетической информации. Картинка про на каком уровне организации осуществляется хранение передача и запись генетической информации. Фото на каком уровне организации осуществляется хранение передача и запись генетической информации

«Биология отрицает законы математики: при делении происходит умножение» Валерий Красовский

Уровни организации живого

Видео урок

Схема

на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть фото на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть картинку на каком уровне организации осуществляется хранение передача и запись генетической информации. Картинка про на каком уровне организации осуществляется хранение передача и запись генетической информации. Фото на каком уровне организации осуществляется хранение передача и запись генетической информации

Теория

Под уровнем организации живой материи понимают то функциональное место, которое данная биологическая структура занимает в общей системе организации мира.

Молекулярно-генетический (молекулярный) уровень

Биологическая система

Биологические макромолекулы (нуклеиновые кислоты, белки, углеводы) и другие вещества (липиды, АТФ и т.п.)

Элементарные процессы

Распад и синтез макромолекул в клетке, самосборка и матричное копирование макромолекул, генные мутации и т.д.

Характеристика

Субклеточный уровень

Биологическая система

Элементарные процессы

Деление полуавтономных органоидов (митохондрии, пластиды), сборка органоидов и т.д.

Характеристика

На уровне субклеточных (надмолекулярных) структур изучают строение и функции органоидов (хромосом, митохондрий, рибосом и др.), а также включений клетки.

Клеточный уровень

Биологическая система

Элементарные процессы

Жизненный цикл клетки. Митоз. Мейоз. Амитоз. Метаболизм и т.д.

Характеристика

Тканевый уровень

Биологическая система

Элементарные процессы

Регенерация ткани, дифференциация, специализация. и т.д.

Характеристика

Ткань – совокупность сходных по строению клеток и межклеточного вещества, объединенных выполнением общей функции. Этот уровень присутствует только у многоклеточных организмов

Органный уровень

Биологическая система

Элементарные процессы

Процессы, связанные с функциями органов: пищеварение, газообмен и т.д.

Характеристика

Орган – структурно-функциональное объединение нескольких типов тканей.

Организменный уровень

Биологическая система

Элементарные процессы

Процессы онтогенеза (индивидуальное развитие), включающие процессы эмбрионального и постэмбрионального развития, обмен веществ, размножение и т.д.

Характеристика

Популяционно-видовой уровень

Биологическая система

Элементарные процессы

Процессы, приводящие к видообразованию: дрейф генов, популяционные волны, дивергенция и т.д.

Характеристика

Популяция – это совокупность организмов одного и того же вида, достаточно долго проживающих на определенной территории и полностью или частично изолированные от других популяций. Вид – совокупность схожих особей, имеющих общее происхождение, свободно скрещивающихся между собой и дающие плодовитое потомство.

Биоценотический (экосистемный, биогеоценотический) уровень

Биологическая система

Элементарные процессы

Круговорот веществ и энергии, межвидовые взаимодействия, передача энергии по цепям питания, сукцессии и т.д.

Характеристика

Биосферный уровень

Биологическая система

Элементарные процессы

Глобальный круговорот веществ и превращение энергии и т.д.

Характеристика

Биосфера – оболочка Земли, заселенная живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности совокупность всех биогеоценозов, включает все явления жизни на Земле. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.

Термины

Список использованных источников

ЕГЭ. Биология. Пошаговая подготовка / Ю.А. Садовниченко. — Москва : Эксмо, 2015. — 320 с

Теоретический вопрос ДНЯ

Советы, которые помогут эффективно подготовиться к ЕГЭ по БИОЛОГИИ

1. Познакомься с актуальными демоверсией, спецификацией, кодификатором на официальном сайте, чтобы четко понимать, что тебя ждет и какие требования предъявляются к уровню подготовки.

на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть фото на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть картинку на каком уровне организации осуществляется хранение передача и запись генетической информации. Картинка про на каком уровне организации осуществляется хранение передача и запись генетической информации. Фото на каком уровне организации осуществляется хранение передача и запись генетической информации

2. Определись, сколько баллов ты хотел бы получить.

на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть фото на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть картинку на каком уровне организации осуществляется хранение передача и запись генетической информации. Картинка про на каком уровне организации осуществляется хранение передача и запись генетической информации. Фото на каком уровне организации осуществляется хранение передача и запись генетической информации

3. Составь расписание своих занятий и старайся максимально его соблюдать. Регулярность занятий очень важна.

на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть фото на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть картинку на каком уровне организации осуществляется хранение передача и запись генетической информации. Картинка про на каком уровне организации осуществляется хранение передача и запись генетической информации. Фото на каком уровне организации осуществляется хранение передача и запись генетической информации

4. Используй несколько источников для подготовки: школьные учебники, пособия для поступающих в ВУЗы, видео уроки и т.п.

на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть фото на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть картинку на каком уровне организации осуществляется хранение передача и запись генетической информации. Картинка про на каком уровне организации осуществляется хранение передача и запись генетической информации. Фото на каком уровне организации осуществляется хранение передача и запись генетической информации

5. Главное – понимание! Старайся разобраться в теме, а потом можно зазубрить некоторые понятия.

на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть фото на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть картинку на каком уровне организации осуществляется хранение передача и запись генетической информации. Картинка про на каком уровне организации осуществляется хранение передача и запись генетической информации. Фото на каком уровне организации осуществляется хранение передача и запись генетической информации

6. Учись внимательно читать и понимать задание.

на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть фото на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть картинку на каком уровне организации осуществляется хранение передача и запись генетической информации. Картинка про на каком уровне организации осуществляется хранение передача и запись генетической информации. Фото на каком уровне организации осуществляется хранение передача и запись генетической информации

7. Начинай с легкого и постепенно усложняй материал. Но не бойтесь сложных заданий, если хочешь высокий балл.

на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть фото на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть картинку на каком уровне организации осуществляется хранение передача и запись генетической информации. Картинка про на каком уровне организации осуществляется хранение передача и запись генетической информации. Фото на каком уровне организации осуществляется хранение передача и запись генетической информации

8. Постоянно повторяй пройденный материал, решай тесты, задачи и теоретические вопросы.

Повторять рекомендуется сразу в течение 15-20 минут, через 8-9 часов и через 24 часа. Полезно повторять материал за 15-20 минут до сна и утром, на свежую голову.

на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть фото на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть картинку на каком уровне организации осуществляется хранение передача и запись генетической информации. Картинка про на каком уровне организации осуществляется хранение передача и запись генетической информации. Фото на каком уровне организации осуществляется хранение передача и запись генетической информации

9. Систематизируй материал, создай целостную и структурированную систему знаний.

на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть фото на каком уровне организации осуществляется хранение передача и запись генетической информации. Смотреть картинку на каком уровне организации осуществляется хранение передача и запись генетической информации. Картинка про на каком уровне организации осуществляется хранение передача и запись генетической информации. Фото на каком уровне организации осуществляется хранение передача и запись генетической информации

10. И не забывай высыпаться, сбалансированно питаться и вести здоровый образ жизни. Это хорошо влияет на память:)

Источник

На каком уровне организации осуществляется хранение передача и запись генетической информации

Процесс «трансляции» наследственной информации происходит на уровне организации жизни

События на клеточном уровне обеспечивают биоинформационное и вещественно-энергетическое сопровождение феномена жизни на всех уровнях ее организации. Сегодня наукой достоверно установлено, что наименьшей самостоятельной единицей строения, функционирования и развития живого организма является клетка, которая представляет собой элементарную биологическую систему, способную к самообновлению, самовоспроизведению и развитию. В клетке сохраняется и воплощается в процессы жизнедеятельности биологическая (генетическая, наследственная) информация — ДНК, матричный механизм репликации ДНК и синтеза белков.

Процесс трансляции — процесс синтеза белка из аминокислот на матрице иРНК (мРНК), осуществляемый рибосомой. Участвуют несколько компонентов клетки, поэтому ответ — на клеточном уровне организации.

Здравствуйте. Разве про­цесс трансляции на­след­ствен­ной информации про­ис­хо­дит на кле­точ­ном уровне? Мне ка­жет­ся на молекулярном. Не­сколь­ко выше был по­доб­ный вопрос и там ука­зан молекулярный уро­вень организации.

На молекулярно-генетическом уровне протекают важнейшие процессы жизнедеятельности — кодирование, передача и реализация наследственной информации. На этом же уровне организации жизни осуществляется процесс изменения наследственной информации.

На клеточном уровне происходит процессы такие как: клеточный метаболизм, жизненные циклы и деление, которые регулируются белками-ферментам.

Клеточный уровень. Клетка является минимальной единицей жизни. Все живое состоит из клеток. Основные механизмы воспроизводства жизни работают именно на клеточном уровне.

На клеточном уровне происходит два основных процесса, необходимых для самовоспроизведения жизни — митоз — деление клетки с сохранением числа хромосом и генов, и мейоз — редукционное деление, необходимое для производства половых клеток — гамет.

И именно этот ответ «заложен» в базе ФИПИ.

Мо­ле­ку­ляр­ный уро­вень — это ре­ду­пли­ка­ция ДНК

А в трансляции участвуют рибосомы, например.

Источник

Биология

Лучшие условия по продуктам Тинькофф по этой ссылке

Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера

. 500 руб. на счет при заказе сим-карты по этой ссылке

Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке

План урока:

Генетическая информация

Население Земли составляет более 7,6 млрд.человек, но найти одинаковых людей просто невозможно. Каждый человек обладает уникальными особенностями, которые сформировались в процессе его развития. У любого организма есть свой генотип, состоящий из определенного набора генов, которые определяют свойства организма или признаки.Все эти факторы являются решающими при формировании и развитии живых существ.

Носителем генетической информации считаются нуклеиновые кислоты. Подробно мы с ними знакомились в 5 уроке «Химический состав клетки».

На молекуле ДНК осуществляется хранение генетической информации, которая записана на ней в виде последовательности нуклеотидов.

Определенный участок ДНК, который выполняет функцию хранения генетической информации,получил название ген.

Информация о синтезе определенного вида белков записана на ДНК в виде сообщений, закодированных последовательностью нуклеотидов. Такие зашифрованные сообщения получили название генетического кода организма.

Генетический код разных организмов обладает рядом общих свойств. Остановимся подробнее на каждом из них.

1. Триплетность – каждая аминокислота кодируется сочетанием из трех расположенных нуклеотидов, получивших название кодон или триплет. Соответственно, единицей генетического кода будет триплет.

Мы уже знаем, что генетическая информация организма записана на молекуле ДНК посредством сочетания четырех нуклеотидов – аденин (А), гуанин (Г), цитозин (Ц), тимин (Т). Нетрудно посчитать, что число возможных комбинаций из четырех нуклеотидов по три составит 64, этого сочетания вполне достаточно для кодирования 20 аминокислот, входящих в состав белка. Вспомнить строение белка вам поможет урок 5 «Химический состав клетки». В настоящее время установлены кодоны для всех известных аминокислот и составлена таблица генетического кода. В следующем пункте остановимся подробнее на правилах пользования данной таблицы и решении задач по расшифровке генетического кода.

2. Код является множественным, или «вырожденным», в таком случае одна и та же аминокислота способна шифроваться несколькими триплетами. Избыточность генетического кода имеет значение для повышения надежности передачи генетической информации.

Специфичность генетического кода заключается в том, что каждый триплет шифрует только одну аминокислоту.

4. Код считается неперекрывающимся, при этом один и тот же нуклеотид не способен содержаться в составе двух рядом расположенных триплетов.

5. В генетическом коде отсутствуют запятые, то есть если произойдет выпадение одного нуклеотида, его место займет ближайший нуклеотид из соседнего кодона, благодаря чему изменится весь порядок считывания. Данный сбой приводит к появлению различных мутаций на генном уровне. Однако, молекула ДНК весьма длинная и складывается из миллионов нуклеотидных пар, поэтому генетическая информация о структуре белка должна быть разграничена. И действительно, существуют триплеты-инициаторы синтеза белковой молекулы и триплеты, которые прекращают синтез белка. Данные кодоны служат своеобразными знаками препинания генетического кода.

6. Нуклеотидный код является единым для всех живых организмов, в этом проявляется его универсальность. Это свойство кода считается убедительным доказательством общности происхождения живой природы.

Из всего вышесказанного можно сделать вывод о том, что такое генетической информации.

Генетической информации присущи определенные свойства:

Решение задач по расшифровке генетического кода

В молекулярной биологии широко используется таблица генетического кода. Ее применяют для определения последовательности аминокислот в белке.

Используя таблицу для расшифровки генетического кода, следует вспомнить сокращенные названия аминокислот, которые нам понадобятся при решении задач.

Рассмотри алгоритм действий при решении задач на определение генетического кода.

1. Разделим участок молекулы ДНК на отдельные триплеты: ААГ – ЦТТ – ТГЦ – ЦАГ.

2. Первый триплет начинается с аденина А ищем его в первом горизонтальном столбце. Учитываем, что нуклеотиды ДНК расположены в таблице генетического кода в скобках. Второе основание тоже аденинА расположен во втором горизонтальном столбце. Третье основание – гуанин Г, расположен в последнем столбце таблицы генетического кода. На пересечении столбцов мы находим необходимую аминокислоту – Фен, используя таблицу сокращений аминокислот, узнаем, что это фенилаланин.

3. Таким же способом определяем аминокислоты ещё для трех триплетов.

В итоге получаем для триплета ЦТТ – глутаминовая кислота, ТГЦ кодирует треонин, а ЦАГ – валин. Тогда у нас получилась следующая последовательность аминокислот: Фен – Глу – Тре – Вал. Соответственно, из данного отрезка молекулы ДНК образуется белок, состоящий из полученной последовательности аминокислот. Биосинтез белка сложный, многоступенчатый процесс, который рассмотрим в следующем пункте.

Биосинтез белка

Структура любого белка зашифрована в ДНК, которая не участвует в его биосинтезе. Данная молекула работает лишь матрицей для создания иРНК. Впервые в живых организмах мы сталкиваемся с реакциями матричного синтеза. Для неживой природы такие процессы не характерны. Такие реакции происходят очень быстро и точно. Рассмотрим их на примере сборки белковой молекулы.

Биосинтез белка происходит на рибосомах, пребывающих в большей степени в цитоплазме. Значит, с целью передачи генетической информации с ДНК к зоне формирования белка требуется проводник. В качестве его выступает иРНК.

1. Непосредственно образованию белка предшествует матричный синтез иРНК, который именуется транскрипция.

Установлено, что РНК синтезируется в ядре клетки на одной из цепочек ДНК согласно принципу комплиментарности. Подробно описан данный принцип в 5 уроке «Химический состав клетки».

Процесс транскрипции белка совершается никак не на целой молекуле ДНК, а только на небольшой ее зоне. Активная роль здесь отводится ферменту РНК-полимераза, которая способствует формированию РНК и распознает «знаки препинания». Транскрипция РНК, нужной с целью формирования белка, происходит в несколько последовательных этапов.

Сначала при содействии ферментов разрываются водородные связи в азотистых основаниях цепочки ДНК. В результате этого нити ДНК разъединяются. В этом месте начинается процесс транскрипции РНК – передача данных с ДНК, необходимых в синтезе определенного белка. Фермент перемещается по цепи ДНК и связывает между собой нуклеотиды в увеличивающуюся цепь иРНК. При биосинтезе белка транскрипция способна совершаться синхронно на некоторых генах одной хромосомы, а также на генах, размещенных на разных хромосомах. В следствие обмена генетической информацией формируется иРНК с последовательностью нуклеотидов, являющихся верной копией матрицы ДНК.

Синтезированная в ядре иРНК отделяется от своей матрицы и через поры ядерной оболочки поступает в цитоплазму, где прикрепляется к малой субъединице рибосом.

На специальных генах формируются и два других типа РНК – тРНК и рРНК. Начало и конец синтеза всех типов РНК строго зафиксирован специальными триплетами, выполняющими функцию «знаков препинания».

2. Вторым этапом синтеза белка считается трансляция. Проистекают данные реакции в рибосомах, куда доставляется информация о структуре белка на иРНК. Процесс трансляции заключается в переносе и реализации генетической информации в виде синтеза белка.

Зрелые молекулы иРНК, попав в цитоплазму, присоединяются к рибосомам и затем постепенно протягиваются через ее тело. В каждый момент биосинтеза белка в клетке внутри рибосомы находится незначительный участок иРНК.

Аминокислоты доставляются в рибосомы различными тРНК, которых в клетке несколько десятков.

Трансляция белка наступает со стартового кодона АУГ. Из этой зоны всякая рибосома прерывисто, триплет за триплетом, перемещается по иРНК, что сопровождается увеличением полипептидной цепочки. Количество аминокислот в белке соответствует числу триплетов иРНК.

Встраивание аминокислот исполняется при содействии тРНК – главных агентов биосинтеза белка в организме.

Цепь тРНК своей конфигурацией напоминает листик клевера. На вершине размещается особенный триплет – антикодон, который прикрепляется согласно принципу комплиментарности к конкретному кодону иРНК.

Рассмотрим последовательность ключевых процессов данного этапа биосинтеза белка.

Молекула тРНК, несущая первостепенную аминокислоту, подходит к рибосоме и примыкает антикодоном к комплиментарному ей триплету. Впоследствии к данной рибосоме присоединяется второй комплекс из тРНК и аминокислоты. В итоге между аминокислотами зарождается пептидная связь.

Первая тРНК, сбросив аминокислоту, оставляет рибосому. Затем к сформировавшейся цепочке прикрепляется третья аминокислота, доставленная в рибосому собственной тРНК, потом четвертая и так далее.

Течение биосинтеза белка не прекращается вплоть до тех пор, пока рибосома не достигнет одного из трех стоп-кодонов – УАА, УАГ или УГА.

На этом образование данной белковой цепочки прекращается, а иРНК под действием ферментов распадаются на нуклеотиды.

Всякий этап биосинтеза белка ускоряется подходящим ферментом и снабжается энергией за счет расщепления АТФ.

Большую роль в транспорте белка после его биосинтеза играет эндоплазматическая сеть. Образовавшиеся белки поступают в ее каналы, по которым перемещаются к определенным участкам клетки.

Синтез белковых молекул протекает непрерывно и с большой скоростью: в одну минуту образуется примерно 50-60 тысяч пептидных связей. Синтез одной молекулы длится всего 3-4 секунды.

Для сравнения можно привести пример синтезированного искусственно белка инсулина. Эта молекула состоит из 51 аминокислотного остатка, а для его синтеза потребовалось провести около 5000 операций. В этой работе принимали участие 10 человек в течении трех лет. Как видите, в лабораторных условиях синтез белка требует огромных усилий, времени и средств.

В результате биосинтеза половина белков нашего тела обновляются за 80 дней. За всю свою жизнь человек обновляет весь свой белок около 200 раз.

Синтез белка характерен только для живых существ, значит, является основным отражением свойств живого.

Источник

Передача наследственной информации клеткой

Вопрос 1. Вспомните полное определение понятия «жизнь».
В середине XIX в. Фридрих Энгельс писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». На современном уровне знаний это классическое определение жизни дополнено представлением об исключительной значимости нуклеиновых кислот — молекул, которые содержат генетическую информацию, позволяющую организмам самовозобновляться и самовоспроизводиться (размножаться).

Приведем одно из современных определений,. данное советским учёным-биологом М.В.Волькенштейном 1965 г.), «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров — белков и нуклеиновых кислот». При этом понятие «открытая система» подразумевает отмеченный еще Ф. Энгельсом обмен веществами и энергией с окружающей средой (питание, дыхание, выделение); понятие «саморегуляция» — способность к поддержанию постоянства химического состава, структуры и свойств. Важным условием успешной саморегуляции является раздражимость — способность организма реагировать на информацию, поступающую из внешнего мира.

Вопрос 3. Какова сущность процесса передачи наследственной информации из поколения в поколение и из ядра в цитоплазму, к месту синтеза белка?
При передаче наследственной информации из поколения в поколение молекулы ДНК удваиваются в процессе дупликации. Каждая дочерняя клетка получает одну из двух идентичных молекул ДНК. При бесполом размножении генотип дочернего организма идентичен материнскому. При половом размножении организм потомка получает собственный диплоидный набор хромосом, собранный из гаплоидного материнского и гаплоидного отцовского наборов.
При передаче наследственной информации из ядра в цитоплазму ключевым процессом является транскрипция — синтез РНК на ДНК. Синтезированная молекула иРНК является комплементарной копией определенного фрагмента ДНК — гена и содержит информацию о строении определенного белка. Такая молекула иРНК является посредником между хранилищем генетической информации — ядром и цитоплазмой с рибосомами, где создаются белки. Рибосомы используют иРНК как матрицу («инструкцию») для синтеза белка в процессе трансляции.

Вопрос 4. Где синтезируются рибонуклеиновые кислоты?
Рибонуклеиновые кислоты синтезируются в ядре. Образование рРНК и сборка субъединиц рибосом происходят в особых участках ядра — ядрышках. Небольшое количество РНК синтезируется в митохондриях и пластидах, где имеется собственная ДНК и собственные рибосомы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *