на какую высоту можно подняться на воздушном шаре

Как высоко можно подняться на воздушном шаре

на какую высоту можно подняться на воздушном шаре. Смотреть фото на какую высоту можно подняться на воздушном шаре. Смотреть картинку на какую высоту можно подняться на воздушном шаре. Картинка про на какую высоту можно подняться на воздушном шаре. Фото на какую высоту можно подняться на воздушном шаре

на какую высоту можно подняться на воздушном шаре. Смотреть фото на какую высоту можно подняться на воздушном шаре. Смотреть картинку на какую высоту можно подняться на воздушном шаре. Картинка про на какую высоту можно подняться на воздушном шаре. Фото на какую высоту можно подняться на воздушном шаре

В рамках простой экскурсии воздушные шары поднимают на высоту от 200 до 1500 метров, но, конечно, есть смельчаки, которым эти цифры покажутся смешными

Впервые в небо на воздушном шаре с горячим воздухом поднялись французский физик Пилатр де Розье и маркиз д’Арландом 21 ноября 1783 года. За 25 минут они пролетели около 10 километров и поднялись на высоту одного километра. На сегодня рекордом высоты для теплового аэростата является полет Виджайпата Синганья, он совершил путешествие, поднявшись на максимальную высоту в 21 километр. Однако самая высокая отметка когда-либо достигнутая воздухоплавательным аппаратом составляет 53 километра! Этот рекорд высоты был поставлен беспилотным шаром японского космического агентства JAXA.

Безусловно, человеку будет очень сложно подняться на такую высоту в корзине шара, ведь уже на высоте в 7 километров дышать становится непросто, даже альпинисты используют кислородные баллоны в таких случаях. Помимо этого на такой высоте очень холодно, а значит, человеку необходимы специальные капсулы для подъема. Но есть и еще одна причина. Воздушные шары бывают двух видов: тепловые (монгольфьер) и газовые (шарльер). Первые поднимаются за счет того, что нагретый воздух внутри шара менее плотный и, следовательно, легче, чем окружающий. Однако чтобы горелка работала, нужен кислород, чем выше поднимается шар, тем больше разрежен воздух вокруг и тем меньше кислорода доступно.

Источник

На какой высоте катают на воздушном шаре?

Полеты на воздушном шаре все больше пользуются популярностью. Красочная и захватывающая прогулка над землей позволяет почувствовать себя птицей и насладиться свободой.
Свободный полет обеспечивает яркие и незабываемые ощущения, которые не забудутся никогда. Один раз прокатившись на воздушном агрегате, вы навсегда останетесь его поклонником!

Высота полета воздушного шара

на какую высоту можно подняться на воздушном шаре. Смотреть фото на какую высоту можно подняться на воздушном шаре. Смотреть картинку на какую высоту можно подняться на воздушном шаре. Картинка про на какую высоту можно подняться на воздушном шаре. Фото на какую высоту можно подняться на воздушном шареБольшинство новичков волнует вопрос, какая максимальная высота полета на воздушном шаре? Аэростат поднимают в воздух в зависимости от выбранной программы.

Как правило, при ознакомительном полете, пилот поднимает агрегат на расстояние до 500 метров (время подъема составляет 15-20 минут). С такой высоты, местные ландшафты кажутся более красочными и интересными.

При желании клиента и при хороших погодных условиях, воздушный шар может лететь на расстоянии 1000 м (1 км), которая считается максимальной. Во время полета можно устроить фотосессию или видеосъёмку.

Для тех, кто считает свободный полет экстремальным, предлагается полет на привязанном воздушном шаре. На привязи воздушный шар поднимается на расстояние 50 метров. В этом случае он крепится к наземным конструкциям специальными тросами и страховочными фалами.

Подвязной шар может одновременно поднять на высоту около 40 человек. Именно поэтому такое мероприятие зачастую заказывают на различные праздники, корпоративы.

Особенно такие полеты вызывают интерес у детей и взрослых отдыхающих в санаториях, пансионатах, лагерях, базах отдыха.

Полеты на воздушных шарах проводят опытные и профессиональные пилоты, которые могут быстро сориентироваться в опасных ситуациях. Они обеспечат безопасность и комфорт.

Кроме того, полет контролируется с земли с помощью радиосвязи. Тепловой аэростат на автомобиле сопровождает наземная команда из опытных инструкторов.

В США изобрели воздушный шар, который может совершать полеты на высоте 30 км

В США полных ходом идет разработка воздушного шара, который сможет подниматься на высоту 30 км. Его будут использовать для коммерческих полетов.

Суть в том, что к шару подсоединяется кабина, рассчитанная на шестерых пассажиров. После того, как агрегат поднимется на необходимую высоту, произойдет отделение кабины, которая будет возвращена на землю. Стоимость одного полета будет составлять примерно 75000$.

Желаете заказать услугу? Звоните нам по телефону 8-911-016-77-13

Источник

Подъем на стратостате в космос

Описание теоретического способа подъема в космос до 100 км и выше, на стратостате.

на какую высоту можно подняться на воздушном шаре. Смотреть фото на какую высоту можно подняться на воздушном шаре. Смотреть картинку на какую высоту можно подняться на воздушном шаре. Картинка про на какую высоту можно подняться на воздушном шаре. Фото на какую высоту можно подняться на воздушном шаре

Введение

Ракеты для доставки грузов или людей на орбиту земли вне зависимости от своей конструкции и эффективности стоят очень дорого, потому что для подъема используют энергию сжигания жидкого топлива, которое они несут на себе. Львиная доля топлива предназначена для подъема самого себя, соответственно и баков для горючего, и преодоление сопротивления воздуха на низкой высоте полета. Масса полезной нагрузки менее 10% от стартовой массы ракеты, что не очень эффективно. Еще до создания ракет рассматривались варианты подъема в космос на воздушных шарах наполненных водородом или гелием, проблема такого способа в том, что с подъемом на большую высоту плотность атмосферы сильно уменьшается, что влечет уменьшение подъемной силы. Есть и ряд других трудностей связанных с расширением оболочки шара, а также относительно небольшой подъемной силой газа.

Сейчас одним из рекордов подъема на стратостате является высота в примерно 40 км. Феликсом Баумгартнером в капсуле массой примерно 1.5 тонны.

Но если бы было возможно подняться на высоту гораздо выше, например до нижней границы космоса линии Кармана, условно обозначенной примерно 100 км. над землей, то можно было бы стартовать сразу в космос. (ведь до нижней околоземной орбиты совсем не далеко высота 160-200 км).

Попробую описать теоретически, что такой подъем может быть возможен, постараюсь обосновать каждый этап и привести как можно больше технических деталей.

Подъем на высоту 40-50 км

Подъем на высоту почти 39 км. был осуществлен Феликсом Баумгартнером на гелиевом стратостате в 2012 году, шар объемом 850 000 (м 3 ) был наполнен гелием, масса капсулы 1400 кг, подъем занял около 2 часов. Так вот подъем на высоту 40 км. практически возможен уже сейчас, а возможно даже и немного выше и вот почему:

При этом мы сделаем один важный вывод, что на высоте 40 км, стратостат с полезной нагрузкой придет в относительное равновесие и почти прекратит свой подъем, замедлится. Так мы сможем поднять не один, а сколько угодно таких стратостатов и все они придут в равновесие на высоте примерно 40-50 км.

Подъем на высоту около 100 км

Попробуем подняться выше 40-50 км. здесь конечно будет больше теории, для этого мы первым делом заправим наш стратостат водородом и дополнительно возьмем с собой еще один стратостат наполненный воздухом или кислородно-азотной смесью, подвешенный рядом или чуть ниже. Дополнительный шар с воздухом будет аналогично подниматься вверх, хоть и иметь меньшую подъемную силу. На высоте 40 км, стратосфера состоит из кислорода и азота, причем кислорода больше, чем у поверхности в процентном соотношении, но плотность во много раз меньше.

Поэтому мы можем водород из стратостата при подъеме на высоту не просто стравливать, для уменьшения давления на оболочку стратостата, а сжигать его по мере подъема, или закачивать компрессором в буфер, что даст дополнительную подъемную тягу и тепло, а достигнув высоту 40 км, начать использовать газ в стратостате в качестве топлива, этот газ будет гореть вступая в реакцию с атмосферой, которую можно нагнетать компрессором, если же она слишком разряжена то можно будет использовать воздух (кислород) из дополнительного шара.

Понадобится двигатель, небольшой, реактивный или точнее сказать ракетный, его главная цель будет создания дополнительно тяги равной массе полезной нагрузки и скажем массе оболочки самого стратостата, что позволит продолжить подъем дальше, даже при небольшом ускорении от этого двигателя. Так газ в стратостате продолжит свой подъем, если масса нагрузки и оболочки перестанет его удерживать.

Приведу пример, что сейчас есть реактивные двигатели совсем небольшого размера, которые одеваются на спину или на руки и человек может парить или даже летать. Масса такого двигателя невелика, да и работа которую он будет совершать, далека от той, что нужна для подъема многотонной ракеты. Думаю, что при современных технологиях такой двигатель будет весить не сильно много, что бы сделать невозможным наш подъем (или же можно использовать двигатели на самой капсуле).

Двигатель будет потреблять не много топлива, необходимой для создания небольшой подъемной силы, газа в стратостате достаточно, как мы сделали вывод раннее поднять на высоту 40 км. мы можем теоретически сколько угодно топлива в виде водорода.

Конечно, нужно предусмотреть, что бы стратостат не схлопнулся и не сложился, для этого внутри него должен быть легкий стержень в виде цилиндра, как раз это и будет канал для захвата газа из стратостата, т.е. что бы газ всасывался с середины или с вершины шара.
Этот же стержень будет помогать толкать стратостат вверх двигателю, держа оболочку шара в вертикально положении. (к тому же при сдувании стратостат может как бы складываться на этот стержень, но это уже особенности конструкции)

Еще один момент очень важный. При работе двигателя будет выделяться много тепла, мы можем пропускать часть водорода, из шара, для отвода этого тепла и возвращать нагретый водород обратно в стратостат, в нижней его части, нагретый газ частично компенсирует потерю подъемной силы и давления в стратостате, так как водород будет выжигаться из него, а также возможно даже создаст дополнительную подъемную силу, так как горячий газ будет подниматься вверх и толкать оболочку изнутри.

И так, установив такой двигатель наш стратостат мы продолжит подъем, пусть даже с небольшой скоростью 10-20 км в час, топлива у нас достаточно, система находящаяся в равновесии на высоте 40 км, начнет подъем дальше.

До какой же высоты так можно подняться? Если технических преград не возникнет, то разумным будет подъем до высоты нижней границы космоса, когда газ практически потеряет свою подъемную силу и станет только лишним грузом для нас.

А это высота около 100-120 км. На данный момент я не вижу теоретических преград для такого подъема.

Но и предел в 100 км, вполне возможно что преодолим, ведь граница атмосферы это весьма условная линия, она продолжается и дальше чем 100км, к тому же если стратостаты будут наполнены достаточным количеством водорода, то используя ракетную тягу можно продолжить подъем и выше.

Достоинства и недостатки

Если получится подняться на высоту до 100 км, то это будет прекрасная возможность, например для космического туризма, капсулу с туристами можно спустить с этой высоты и приземлить ее на парашютах или планирую, если это будет подобие самолета.

Можно попробовать запускать ракеты или космические челноки с этой высоты, как грузовые, так и с людьми, например челнок наподобие Клипера. Конечно, масса такого корабля будет не 1,5 тонны, а в 10 раз больше (15 тон), но что мешает нам усовершенствовать нашу подъемную систему и сделать не один стратостат с двигателем, а десять таких стратостатов, которые будут прикреплены к легкой и прочной центральной балке из углеволокна, на тросах, в виде крестовины и находясь друг над другом. Полностью вся эта система будет много разовой, поднявшись на высоту 100 км (или выше), она будет отсоединяться и используя свои собственные двигатели уходить в сторону на снижение, например с помощью парашютной системы или используя оставшийся газ. Вся эта система может быть многоразовой, а стоимость топлива, водорода который можно получать из воды с помощью электролиза минимальна, это решает проблему экологическую, а также проблему космического мусора.

И так после отсоединения нашей подъемной системы, одновременно с этим будет запускаться двигатель на нашей капсуле (или челноке), я ее представляю в виде много разового корабля типа Клипер, он своими двигателями выводит себя и полезную нагрузку на низкую околоземную орбиту, например на стыковку к МКС. (высота 300-400км, или ниже).

Сам Клипер полностью возвращаемый и многоразовый.

Так мы решаем ряд важных задач:

Использование водорода, очень взрывоопасного газа, особенно на старте, на земле. Так как на высоте более 1-2 км, даже при нештатной ситуации капсула может быть сброшена а газ просто сгорит, то на земле, такой возможности нет. Решением может быть несколько,

1. Самое простое, сделать всю систему с наполнением газом стратостата, автоматической, на поверхности земли, а весь персонал и капсула будет находится под землей, когда стратостаты будут наполнены, будет открывать люк и начинаться подъем, при этом капсула может быть защищена кожухом из защитной оболочки, которая может сбрасываться по мере подъема.

2. Второй вариант более сложный, но безопасный, это наполнять гелием стратостат на высоте в несколько километров, заменять гелий на водород, при этом заправляющую систему с баллонами сбрасывать на парашюте. (или методом замена одних шаров на другие, когда надуваются водородные а гелиевые шары отсоединяться).

Медленная скорость подъема, незначительный недостаток при грузовых подъемах. К тому же ожидание в 4-5 часов, без перегрузок, люди переносят достаточно хорошо.

Легкий гелиевый надувной цилиндр внутри стратостата, идущий снизу до верху с отверстиями, так что бы стратостат мог сложится на него и не схлопнуться.

Компрессор в двигателе 2 камеры, для сжатия газа водорода и кислорода из атмосферы (или баллона) до 1 атмосферы, или меньше, что бы потом выпустить газы в камеру сгорания.
Если будет нужно несколько стратостатов скреплять, их можно закреплять на углеродной (легкой и прочной) фермы в виде креста или звезды, + или *, таким образом можно будет создать большую подъемную силу.

Вращение стратостатов вокруг своей оси, например с оборотом 1 раз в 1-2 минуты, это не сильно быстро даже для человека, нужно для равномерного прогрева шаров от солнца.
Использование в качестве двигателя, двигатель на капсуле, таким образом отпадет необходимость в небольшом компактном двигателе.

Не решенная проблема.

Собственно возможен ли такой подъем, и какой объем топлива в виде газа потребуется, а также можно ли использовать в качестве окислителя для водорода разряженную атмосферу на высоте, до 100 км, пусть даже нам и не нужно создавать очень большие усилия.

Например: зная что, звезды красные карлики горят в тысячи раз дольше чем их большие собраться синий гиганты, которые гораздо больше, но сжигают очень много топлива, можно предположить что небольшой двигатель, который будет создавать относительно небольшую тягу сможет работать долго.

Расход нашего мини ракетного двигателя будет в 100, а может быть в 1000 раз меньше, чем у стандартного ракетного двигателя, так как работа совершаемая им на порядок меньше, что говорит о том, что теоретически даже 10-20 тон топлива может быть достаточно для подъема на высоту 100 км или выше.

Но даже если ракета будет стартовать с высот 100 км., ей понадобится еще достаточно много топлива для достижения 1-ой космической скорости и выхода на низкую околоземную орбиту, которая начинается от 160-200 км, где мы можем начать собирать нашу космическую станцию и поддерживать ее на этой или более высокой орбите за счет например ионных двигателей.
Теоретически такая станция могла бы временно снижаться что бы состыковаться с нашей капсулой (клипером) а затем подниматься выше, или лучше использовать отдельный орбитальный буксир.

Орбитальный буксир. На высоте 200 км, так как этот проект РКК Энергия, и планировался к использованию с Клипером, то в случае его использования достаточно было бы подняться на высоту 200км. и достигнуть первой космической скорости. (7,9 км/с)

Сравнение с Falcon 9 и запуском Crew Dragon.
Отделение первой ступени происходит на высоте 100 км, вторая ступень разгоняет корабль до скорость 28000 км/ч и поднимает на высоту 200км, масса второй ступени, сухая 4т, а с топливом 112 тон, масса полезной нагрузки корабля Crew Dragon 6-12 тон, в зависимости от назначения грузовой или пассажирский, а также нужно учесть что головной обтекатель нам не нужен, массой 1.7 тонны.

Делаем вывод, что на необходимо поднять на высоту 100 км, массу примерно 120 т., с учетом того, что необходимо будет разогнать корабль до 1-ой космической скорости, то нагрузка вырастит еще, возьмем приблизительно цель 150 т.

Так как рассмотренный нами подъем системы в 1,5 тонны на высоту 100 км. теоретически возможен, а также можно предположить что и 15 возможны к поднятию на высоту 100 км, можно сделать вывод, что вывести на орбиту мы можем примерно 500-1200 кг. Полезной нагрузки, это может быть спутник или груз на МКС.

Перспектива космического туризма и доставки людей, грузов на орбиту и дальше.

Если же теоретически можно будет увеличить высоту подъема до 100-120 км, при этом масштабируемость подъемной системы не будет ограничена, то теоретически мы сможем поднять 2-ю ступень вместе с космическим кораблем на высоту 100+ км, откуда и запустить. Получается, мы откажемся от первой ступени ракеты, но целесообразно ли это экономически? Если уже сейчас первая ступень ракеты может быть полностью возвращаемой?

Получается что такая система подъема с использованием водородных стратостатов и двигателя, может быть выгодной только при суборбитальных полетах, например туристов на высоте 100 км, откуда они могут потом плавно спуститься на оставшемся гелиевом шаре или на суборбитальном планере.

Подъем полезной нагрузки возможно для небольших объектов массой около 500-1000 кг, чем больше будет масса, тем сложнее будет вся конструкция и тяжелее ее элементы. Фактически мы можем реализовать замену первой ступени ракеты носителя, что в принципе может быть очень выгодно с экономической точки зрения. Так как первая ступень занимает примерно 70-76% массы от стартовой массы ракеты.

Представим стартовую площадку, ночью еще до рассвета над землей виднеются надуваемые водородом стратостаты, они крепятся за счет сверхпрочных и легких тросов, к легкой и сверхпрочной ферме в виде снежинки *, их около 10 штук, самый большой по центру, но сама капсула находится под землей, после наполнения стратостатов подземный люк открывается и стратостат начинает подъем, до высоты 40 км. вся конструкция поднимается за счет подъемной силы, излишки водорода из стратостатов сжимаются компрессором в топливные баки на капсуле, а также используются для придания подъемной силы, начиная с высоты 40 км, начинают включаться дополнительные двигатели под стратостатами. Двигатели сначала работают на минимальной мощности, но с подъемом все выше и выше их мощность возрастает и достигая высоты 100 км, они включаются на полную мощность поднимая всю конструкцию еще выше уже за счет реактивной тяги, также придавая горизонтальное ускорение, по баллистической траектории, но водород быстро заканчивается и на высоте 140-150 км, вся подъемная конструкция отсоединяется, в этот же момент двигатели на капсуле запускаются и выталкивают капсулу на высоту до 200 км, разгоняя ее при этом до 1-ой космической скорости, топливо остается минимум, но на этой высоте капсулу уже ждет орбитальный буксир для того чтобы пристыковаться и поднять ее на более высокую орбиту к МКС. Следующим запуском будет доставлен груз и топливо для дозаправки буксира.

Объем РедБул стратос 850 000 (м 3 ), на земле его объем должен быть примерно в 100 раз меньше, приблизительно 8500 (м 3 ). а это приблизительно 765 кг. водорода.

Поэтому для подъема достаточного количества топлива в виде водорода, потребуется большое количество больших стратостатов.

Дирижабль на водороде.
И так полный сомнений в возможности данного метода, а также даже в если и теоретически все реализуемо, то будет ли действительно правильно и рационально подниматься в космос на водородных стратостатах, я решил посмотреть уже существующие или существовавшие подобные решения и вспомнил про дирижабли на водороде, и уведенная информация воодушевила меня.

Вот теперь действительно можно призадуматься всерьез, может ли эта конструкция подняться на высоту до 100 км, или даже чуть выше и затем уже стартовать?

Но есть существенная оговорка, так как плотность атмосферы с подъемом существенно меняется то и размер самого стратостата сильно изменится примерно в 15-100 раз в объеме. Для того чтобы компенсировать это расширение нам потребуется сбрасывать давление, т.е. переливать газ водород в другие шары, стратостаты, например в такие как были у Баумгартнера, их потребуется еще 5 штук, так как их объем примерно по 800 000м 3. При запуске они будут свернуты, но по мере подъема они будут наполнятся излишками водорода из дирижабля.

Необходимо подумать и о кислороде, который нужен нам для сжигания водорода на высотах выше 40 км, его нужно будет брать в отдельных баллонах или же в отдельных шарах, которые будут подниматься за счет нагрева этого газа солнцем или теплом от двигателя, в обоих вариантах есть как плюсы так и минусы. Если топливо, кислород нести в баллонах то это упрощает конструкцию, но при этом создает дополнительную нагрузку при подъеме, а если же брать кислород в виде наполненных стратостатов то потребуется значительно усложнить конструкцию учитывая его расширения при подъеме и необходимость создания положительной подъемной силы. Ограничение 20 км, не сможет подняться такой шар наполненный воздухом, возможно нужна будет какая то смесь газов, горючих с водородом например азотно-кислородная.

Заключение

Я не являюсь специалистом в области космоса или ракетостроения, но все что я описал, на мой взгляд, теоретически возможно и даже практически реализуемо, с текущим уровнем технического развития, и нет преград уже сегодня, чтобы попробовать этот способ. Если это действительно возможно, то такая система будет иметь огромные экономические и экологические преимущества, над привычными ракетными запусками в космос.

Данную систему можно было бы использовать хотя бы для запуска не больших спутников на орбиту земли, так как опасность водорода и долгий подъем не как не повлияют на аппарат, к тому же масса спутников обычно относительно невелика. (наблюдается тенденция к миниатюризации спутников).

А главное это космический (суборбитальный) туризм это самый оптимальный вариант для использования, будет стоить не дорого, нет больших перегрузок, а вся система может быть более безопасной и многоразовой, к тому же подъем капсулы в 1,5-3 тонны на высоту до 100 км, будет не так сложен.

Пожалуйста, напишите, что вы думаете, и если описанный мною способ невозможен, обоснуйте это хотя бы теоретически.

P.S.
После прочтения комментариев решил добавить.
Хорошо, согласен до высоты 100 км. нам не подняться, тогда допустим мы на высоте 40 км,(на гелиевом шаре) попробуем разгонять Стратостат/дирижабль в горизонтальном направление, что бы достичь как можно большой скорости, хотя бы чисто теоретически нам нужна первая космическая скорость 7 км/сек. Понятно что для этого нужно много топлива, но вися или плывя на высоте 40 км., можно попробовать использовать разные способы разгона, к тому же Атмосфера будет иметь сопротивление, причем с разгоном сопротивление будет сильно возрастать, на высоте до 200 км. сильно сказывается тормозящее действие воздуха, как раз эту силу можно использовать в качестве подъемной, т.е. как бы опираясь на атмосферу при горизонтальном разгоне можно было бы и подниматься вверх, что бы разогнаться как можно больше и подняться чуть выше.

Источник

На какую высоту можно подняться на воздушном шаре

В день полета пилот определяет направление ветра, исходя из этого выбирается площадка для взлета. В любом случае она находится в пределах 15 минут езды от места сбора.

Средняя продолжительность полета составляет от 50 до 75 минут, но обычно он проходит чуть больше часа. Вместе с дорогой из дома и домой ваше приключение займет 4–6 часов.

С марта по ноябрь – 2 раза в сутки, утром – с восходом солнца, и вечером – за 3 часа до заката. Зимой полеты можно проводить в течение всего светового дня.

Динамические вертикальные потоки воздуха – «термики», вызванные нагревом земли от солнца, не позволяют летать в дневное время.

По ссылке вы можете посмотреть примерный график времени встреч. Оно меняется в зависимости от времени восхода и захода солнца, поэтому всегда уточняйте информацию у менеджера клуба.

Высота будет меняться на протяжении полета, так пилот регулирует скорость и направление движения, используя разные потоки воздуха. В районах Истры и Дмитрова высота составляет до 500 м. Полеты бывают и высотными, шары поднимаются на несколько километров. Чем больше высота, тем разряженнее воздух. Это отражается и на работе оборудования, и на самочувствии людей. Безопасными (без специального оборудования) считаются полеты на высоте до 4000 м. Высота зависит от пожеланий пассажиров, но ограничивается правилами, действующими в конкретном регионе. Средняя высота при туристическом полете – 500 м (сравнимо со 150-этажным домом).

За час полета шар преодолевает несколько десятков километров. Топлива хватает на 2–3 часа.

Место посадки зависит от направления ветра. Это любое свободное поле, подходящее для приземления и встречи сопровождающим автомобилем.

Для приземления выбирается достаточно большое поле. Чем сильнее ветер, тем больше должна быть площадка, чтобы избежать столкновения с препятствиями. Незадолго до приближения к площадке оболочку перестают нагревать, и шар снижается. Воздух выходит при помощи специального клапана. При приземлении важно следовать всем предполетным инструкциям пилота – сгибать колени и держаться за поручни, пока корзина не остановится.

В соответствии с Руководством по летной эксплуатации аэростатов, парашют не требуется. Воздушные шары – один из самых безопасных видов малой авиации. Парашюты могут потребоваться в исключительных случаях – полеты на большой высоте или связанные с установлением рекордов.

Ваши друзья могут следовать за сопровождающим автомобилем клуба на своем транспорте, либо, если с вами один человек, он может ехать в нашей машине. Также ваши гости могут ожидать вас после полета на нашей базе.

Мы клиентоориентированы, для нас очень важно дать каждому возможность летать. Для людей с ограничением слуха мы прописываем специальный инструктаж. Поскольку каждый конкретный случай уникален, мы подходим к таким вопросам очень деликатно и индивидуально. Главным для нас остается безопасность полета, поэтому мы рады обсудить с вами все детали по телефону.

В день полета в условленном месте вас встретят представители клуба, пилот определит место старта. На поле команда сопровождения раскладывает и собирает воздушный шар, вы можете принять участие в этом процессе –сфотографировать и даже помочь членам команды. Пилот воздушного судна проводит обязательный предполетный инструктаж, ознакомление с техникой безопасности и вы отправляетесь в полет. После приземления вас ждет церемония посвящения. Затем вас отвезут на базу, или домой – для этого заранее договоритесь о трансфере.

Если ваш дом расположен по курсу полета, а направление ветра будет подходящим, это возможно.

Они требуются только на газовых шарах. Тепловые модели аэростатов применяются для непродолжительных полетов, высота регулируется за счет разницы температур.

Удобно, по погоде. Обувь на плоской подошве, наличие легких головных уборов приветствуется! Желательно надеть удобные брюки, ведь вам нужно будет перелезать через борт корзины высотой примерно 1,10 м. Если накануне был дождь или туман, лучше надеть непромокаемую обувь. Мы предлагаем вам поучаствовать в подготовке воздушного шара к полету, этот интересный процесс очень нравится гостям и облегчает работу команды. Поэтому стоит выбрать одежду, которую не жалко испачкать.

Да. Вы можете взять фотоаппарат, телефон, селфи-палку – съемки с высоты отличаются особой красотой. Не упаковывайте вещи в большие рюкзаки или сумки – они мешают в полете. За сохранность техники администрация клуба ответственности не несет. Чтобы полет был комфортным и вам не пришлось возить с собой фототехнику, предлагаем воспользоваться услугами нашего фотографа. Путешествие будет беззаботным, а фотоотчет – полным и ярким.

Шар с оборудованием и запасом топлива весит примерно 400 кг.

Безусловно, необходимо лишь тепло одеться. Зимние полеты отличаются прекрасным видом, ведь воздух в это время года особенно чист.

Для этого используется специальный прицеп и внедорожник, так как возможно приземление в труднодоступном месте.

Высота около 21 м (7-этажный дом), диаметр 14 м. Большой аэростат способен поднять около 850 кг, его высота – с 8-этажный дом.

Воздух внутри оболочки прогревается при сжигании обычной смеси пропан-бутана. Для часового полета достаточно около 70 литров газа.

Цена зависит от материала, из которого сделана оболочка, и ее объема. Шар без какого-либо оформления можно купить за 800 тыс. – 1 млн. руб.

Это зависит от веса людей, запаса топлива, погоды и объема шара. На наших аэростатах размещаются до 12 человек.

Вариометр – для расчета скорости снижения и набора высоты, альтиметр – для измерения высоты. Для определения местоположения применяется GPS, а для связи с сопровождающим автомобилем – рация.

Обычно воздух прогревается от 50 до 110ºС, в зависимости от времени года.

Наиболее известные производители: Cameron Balloons (Англия), KubicekBalloons (Чехия), Ultra Magic (Испания), компания «Русбал» (Россия). Мы используем шары отечественного и европейского производства.

Чтобы полет был безопасным, а эмоции – позитивными, вы должны быть готовы перелезть через борт корзины высотой 110 см, стоять в течение 1 часа и согнуть колени при посадке. Вы также должны прослушать все инструкции пилота относительно техники безопасности и предполетного инструктажа. Согласно Воздушного Кодекса РФ командир воздушного шара несет полную ответственность за безопасность лиц на борту, поэтому пилот имеет право принять окончательное решение о допуске к полету в каждом конкретном случае.

Мы берем детей от 6 лет, в сопровождении взрослых. Маленькие дети боятся шума горелки, кроме того, выше бортика корзины им ничего не видно, а поднимать и держать ребенка на руках – против правил безопасности. Подростки до 18 лет приглашаются в полет в сопровождении хотя бы одного взрослого. Мы рады приветствовать на борту аэростата гостей любой комплекции, однако в случае, если ваш вес более 100 кг, мы будем вынуждены взять дополнительную плату за полет. Позвоните нам, и мы обсудим все детали.

К сожалению, по причинам безопасности мы не можем осуществить полет с будущими мамами. Но если вы узнали о беременности уже после приобретения сертификата на полет, мы продлим срок его действия до момента появления вашего малыша на свет.

Нет, это исключено. В состав пилотов нашего клуба входят профессионалы с годовым налетом более 100 полетов в год, поэтому лучше довериться специалистам. Но пилоты с радостью ответят на все ваши вопросы об управлении шаром. Но если вы все-таки хотите почувствовать себя пилотом, вы можете получить первые азы управления аэростатом по программе «Стань пилотом»

По статистике, воздушный шар признан самым безопасным средством малой авиации. Мы выбираем идеальные погодные условия, все пилоты имеют огромный опыт, а техника – сертификаты летной годности.

В нашем клубе все аэростаты, пилоты и гости клуба застрахованы.

Даже если погода выглядит солнечной и ясной, полет может быть отменен. При планировании путешествия наши пилоты используют специализированные сайты и программы, прогноз которых зачастую разнится с прогнозом на обычных сайтах. Для нас главное, чтобы ваше воздушное приключение состоялось, поэтому мы предложим вам другую дату.

Полеты на таких аэростатах могли выполнять пилоты, которые тренируются для спортивных полетов. В любом случае решение о полете принимает командир воздушного судна всегда исходя из приоритета безопасности полёта.

Пожалуйста, сообщите нам о своем желании не позднее, чем за сутки. Мы перенесем полет на ту дату, которая удобна вам и свободна у нас.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *