что такое глубина кодирования звука

Кодирование и обработка звуковой информации

Звуковая информация. Звук представляет собой распространяющуюся в воздухе, воде или другой среде волну с непрерывно меняющейся интенсивностью и частотой.

Человек воспринимает звуковые волны (колебания воздуха) с помощью слуха в форме звука различных громкости и тона. Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука (рис. 1.1).

Рис. 1.1. Зависимость громкости и высоты тона звука от интенсивности и частоты звуковой волны

Человеческое ухо воспринимает звук с частотой от 20 колебаний в секунду (низкий звук) до 20 000 колебаний в секунду (высокий звук).

Человек может воспринимать звук в огромном диапазоне интенсивностей, в котором максимальная интенсивность больше минимальной в 10 14 раз (в сто тысяч миллиардов раз). Для измерения громкости звука применяется специальная единица «децибел» (дбл) (табл. 5.1). Уменьшение или увеличение громкости звука на 10 дбл соответствует уменьшению или увеличению интенсивности звука в 10 раз.

Таблица 5.1. Громкость звука

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

Таким образом, непрерывная зависимость громкости звука от времени A(t) заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек» (рис. 1.2).

Рис. 1.2. Временная дискретизация звука

Частота дискретизации. Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за I секунду (чем больше частота дискретизации), тем точнее «лесенка» цифрового звукового сигнала повторяет кривую диалогового сигнала.

Частота дискретизации звука может лежать в диапазоне от 8000 до 48 000 измерений громкости звука за одну секунду.

Глубина кодирования звука. Каждой «ступеньке» присваивается определенное значение уровня громкости звука. Уровни громкости звука можно рассматривать как набор возможных состояний N, для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирования звука.

N = 2 I = 2 16 = 65 536.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем более качественным будет звучание оцифрованного звука. Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, получается при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим «моно»). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим «стерео»).

Необходимо помнить, что чем выше качество цифрового звука, тем больше информационный объем звукового файла. Можно оценить информационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 24 000 измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду й умножить на 2 (стереозвук):

16 бит × 24 000 × 2 = 768 000 бит = 96 000 байт = 93,75 Кбайт.

Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).

Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV или в формате со сжатием МР3.

При сохранении звука в форматах со сжатием отбрасываются «избыточные» для человеческого восприятия звуковые частоты с малой интенсивностью, совпадающие по времени со звуковыми частотами с большой интенсивностью. Применение такого формата позволяет сжимать звуковые файлы в десятки раз, однако приводит к необратимой потере информации (файлы не могут быть восстановлены в первоначальном виде).

Контрольные вопросы

1. Как частота дискретизации и глубина кодирования влияют на качество цифрового звука?

Задания для самостоятельного выполнения

1. Задание с выборочным ответом. Звуковая плата производит двоичное кодирование аналогового звукового сигнала. Какое количество информации необходимо для кодирования каждого из 65 536 возможных уровней интенсивности сигнала?

1) 16 битов; 2) 256 битов; 3) 1 бит; 4) 8 битов.

2. Задание с развернутым ответом. Оценить информационный объем цифровых звуковых файлов длительностью 10 секунд при глубине кодирования и частоте дискретизации звукового сигнала, обеспечивающих минимальное и максимальное качество звука:

а) моно, 8 битов, 8000 измерений в секунду;

б) стерео, 16 битов, 48 000 измерений в секунду.

3. Задание с развернутым ответом. Определить длительность звукового файла, который уместится на дискете 3,5″ (учтите, что для хранения данных на такой дискете выделяется 2847 секторов объемом 512 байтов каждый):

а) при низком качестве звука: моно, 8 битов, 8000 измерений в секунду;

б) при высоком качестве звука: стерео, 16 битов, 48 000 измерений в секунду.

Источник

Обработка звука

Под обработкой звука следует понимать различные преобразования звуковой информации с целью изменения каких-то характеристик звучания. К обработке звука относятся способы создания различных звуковых эффектов, фильтрация, а также методы очистки звука от нежелательных шумов, изменения тембра и т.д. Все это огромное множество преобразований сводится, в конечном счете, к следующим основным типам:

1. Амплитудные преобразования. Выполняются над амплитудой сигнала и приводят к ее усилению/ослаблению или изменению по какому-либо закону на определенных участках сигнала.

2. Частотные преобразования. Выполняются над частотными составляющими звука: сигнал представляется в виде спектра частот через определенные промежутки времени, производится обработка необходимых частотных составляющих, например, фильтрация, и обратное «сворачивание» сигнала из спектра в волну.

3. Фазовые преобразования. Сдвиг фазы сигнала тем или иным способом; например, такие преобразования стерео сигнала, позволяют реализовать эффект вращения или «объёмности» звука.

4. Временные преобразования. Реализуются путем наложения, растягивания/сжатия сигналов; позволяют создать, например, эффекты эха или хора, а также повлиять на пространственные характеристики звука.

Аналоговый и дискретный способы представления звука

Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме.

При аналоговом представлении физическая величина принимает бесконечное множество значений, причем ее значения изменяются непрерывно.

При дискретном представлении физическая величина принимает конечное множество значений, причем ее величина изменяется скачкообразно.

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

Примером аналогового хранения звуковой информации является виниловая пластин­ка (звуковая дорожка изменяет свою форму непрерывно), а дискретного — аудиокомпакт-диск (звуковая дорожка которого содержит участки с различной отражающей способностью).

Восприятие звука человеком

Звуковые волны улавливаются слуховым органом и вызывают в нем раздражение, которое передается по нервной системе в головной мозг, создавая ощущение звука.

Колебания барабанной перепонки в свою очередь передаются во внутреннее ухо и раздражают слуховой нерв. Так образом человек воспринимает звук.

В аналоговой форме звук представляет собой волну, которая характеризуется:

Герц (Гц или Hz) — единица измерения частоты колебаний. 1 Гц= 1/с

Человеческое ухо может воспринимать звук с частотой от 20 колебаний в секунду (20 Герц, низкий звук) до 20 000 колебаний в секунду (20 КГц, высокий звук).

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

Кодирование звуковой информации

Для того чтобы комп ьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

Качество кодирования звуковой информации зависит от :

1)частотой дискретизации, т.е. количества измерений уровня сигнала в единицу времени. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее процедура двоичного кодирования.

2)глубиной кодирования, т.е. количества уровней сигнала.

Современные звуковые карты обеспечивают 16-битную глубину кодирования звука. Количество различных уровней сигнала (состояний при данном кодировании) можно рассчитать по формуле: N = 2 i = 2 16 = 65536, где i — глубина звука.

Таким образом, современные звуковые карты могут обеспечить кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала присваивается 16-битный код.

Форматы звуковых файлов

РСМ. РСМ расшифровывается как pulse code modulation, что и является в переводе как импульсно-кодовая. Файлы именно с таким расширением встречаются довольно редко. Но РСМ является основополагающей для всех звуковых файлов.

RIFF. Resource Interchange File Format. Уникальная система хранения любых структурированных данных.

MOD. Файл хранит в себе короткий образец звука, который потом можно использовать в качестве шаблона для инструмента.

AIF или AIFF. Audio Interchange File Format. Данный формат распространен в системах Apple Macintosh и Silicon Graphics. Заключает в себе сочетание MOD и WAV.

MID. Файл, хранящий в себе сообщения MIDI-системе, установленной на Вашем компьютере или в устройстве.

МР3. Самый скандальный формат за последнее время. Многие для объяснения параметров сжатия, которые в нем применяют, сравнивают его с jpeg для изображений. Там очень много наворотов в вычислениях, чего и не перечислишь, но коэффициент сжатия в 10-12 раз сказали о себе сами. Специалисты говорят о контурности звука как о самом большом недостатке данного формата. Действительно, если сравнивать музыку с изображением, то смысл остался, а мелкие нюансы ушли. Качество МР3 до сих пор вызывает много споров, но для «обычных немузыкальных» людей потери не ощутимы явно.

RA. Real Audio или потоковая передача аудиоданных. Довольно распространенная система передачи звука в реальном времени через Интернет. Скорость передачи порядка 1 Кб в секунду. Полученный звук обладает следующими параметрами: 8 или 16 бит и 8 или 11 кГц.

Источник

Что такое частота дискретизации звука? Что такое кодирование звука?

Содержание:

Кодирование звуковой информации и частота дискретизации звука — это два взаимосвязанных понятия, чуть ниже вы поймете почему.

Все понимают значение термина «звук»? Любое звучание — это всего лишь колебание невидимых волн, которые могут распространяться по воздуху, в водной стихии или в любом другом окружении; эти волны имеют бесперебойную частотность и интенсивность колебания. Люди улавливают различные звуки при помощи своего уха, что дает им возможность различать их громкость и тональность. Причем тон зависит от частотности волн, а громкость от ее интенсивности.

Чтобы измерить громкость звука, люди используют специализированную единицу измерения — Дб (децибел). Громкость звучания имеет прямую зависимость от его интенсивности, поэтому когда мы говорим, что громкость уменьшилась или увеличилась на 15 Дб, это означает, что интенсивность уменьшилась или увеличилась в 15 раз.

Если громкость измеряется в Дб, то частотность звука измеряют в Гц (Герцах). Герцы показывают сколько колебаний в секунду делает звуковая волна.

Кодирование звуковой информации

Как мы знаем, современный компьютер — это мощное устройство для обработки различных типов данных. Компьютер также может обрабатывать и звук, поэтому когда мы произносим «кодирование звуковой информации», то косвенно подразумеваем наличие компьютера. Но компьютер не осуществляет кодирование нашего привычного аналогового звука, который мы улавливаем своим ухом. Для компьютера пригоден только цифровой звук. Чтобы преобразовать стандартный звук в цифровой необходимо специальное устройство. На компьютере таким устройством является звуковая карта.

Преобразование звука из «привычного человеческому уху» в цифровой — это и есть процесс дискретизации. Причем для дискретизации звука, так же как и обычному звучанию, свойственна частотность и интенсивность.

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

Кодирование звуковой информации: частота дискретизации звука

Чтобы компьютерное устройство смогло преобразовать стандартный звук в цифровой формат (последовательность цифр), ему необходимо само звучание привести в соответствующий дискретный формат. Для этого применяется такое свойство, как «временная дискретизация».

Временная дискретизация представляет собой процесс разбивки и фиксации «привычного нам» звучания на небольшие промежутки по времени. В каждом зафиксированном промежутке измеряется показатель интенсивности звучания.

Частота дискретизации звука — это количественное значение фиксации интенсивности звучания в течение одной секунды. Чем больше частотность дискретизации звучания, тем четче оцифрованный звуковой сигнал будет отражать «привычный нашему уху» звук, соответственно, кодирование звуковой информации будет качественней. Частота дискретизации звука располагается в интервале от 8000 и до 48 000 измерительных фиксаций интенсивности в секунду. Вообще-то сегодняшние компьютерные звуковые системы смогут осуществлять куда большее количество фиксаций громкости в секунду, чем 48 000 (48кГц), некоторые могут вплоть до 192 000. Просто 48 кГц — это частота дискретизации стандарта DAT, который часто используется на компьютере, также есть стандарт CD со своими 44.1 кГц.

У вас может возникнуть такой вопрос. Мы же знаем, что, раз используется большая частота дискретизации звука, тогда и лучше будет само кодирование звуковой информации и, соответственно, оцифрованное звучание будет качественней. Это не совсем так. Чем интенсивней частота дискретизации, тем сильнее возрастает нагрузка на вычислительные мощности компьютера. Поэтому важно найти «золотую середину», чтобы и звук был хороший, и компьютер справлялся. Для этого оптимальную частоту дискретизации звука выбрали по-другому пути. Известно, что человеческое ухо улавливает частоты до 20 кГц. Опираясь на теорему Котельникова, можно посчитать, что, для того, чтобы цифровой звук соответствовал 20 кГц аналогового, то частотность его дискретизации должна составлять примерно в 2 раза больше, то есть около 40 кГц. Делать частотность дискретизации намного больше нет смысла, потому что человеческое ухо не рассчитано на такой диапазон.

Кодирование звуковой информации: глубина кодирования звука

Глубина кодирования звука — это количественная мера, которая показывает объем информации, необходимый для кодирования уровней в момент дискретизации. Простыми словами: в момент дискретизации происходит «срез» интенсивности звучания. Чтобы этот «срез» как-то оцифровать, нужна определенная величина информации. Вот эта величина информации и есть глубина кодирования звука.

Глубина кодирования звука исчисляется в битах. Самые распространенные варианты это звук в 8 или 16 бит. Но нужно понимать, что есть звуковые карты, которые выдают глубину кодирования звучания и в 24 бита.

Кодирование звуковой информации с глубиной кодирования звука в 16 бит будет означать, что зафиксированным «срезам» громкости при дискретизации звучания будет задаваться 16-битный код двоичной системы счисления.

Кодирование звуковой информации напрямую имеет зависимость от частоты дискретизации и глубины кодирования звука. Например, нижайшее качество звучания будет обеспечено частотностью в 8 кГц и глубиной 8 бит. Самое высшее качество звучания будет обеспечено частотностью в 48 кГц и глубиной в 16 бит. Но самое главное, чем больше качество звучания, тем больше будет его «вес».

Источник

Кодирование звуковой информации

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

Звук и его дискретность

Звук являет собой волну, имеющую изменяющуюся со временем частоту и амплитуду колебаний. Иными словами, это непрерывный сигнал. Чем тише звук, который слышит человеческое ухо, тем ниже его амплитуда, а чем ниже его тон, тем меньше частота звукового сигнала.

На сегодняшний день для производства звуковых карт используется глубина кодирования звуковой волны величиной 64, 32 и 16 бит. Для удобства использования непрерывность звукового колебания при кодировании заменяют на последовательные отдельные сигналы, являющие собой последовательный ряд электрических импульсов, записанных с помощью нулей и единиц системы двоичного исчисления.

Не нашли что искали?

Просто напиши и мы поможем

Частота дискретизации звуковой волны

Объем звуковой информации

Чем больше по объему аудио файл, тем лучше будет качество его воспроизведения. Объем более качественного файла всегда меньше объема файла с низким качеством, при равной их продолжительности.

Для расчета объема информации, занимаемого аудио файлом с одной звуковой дорожкой, используют нижеприведенную формулу:

Рассмотрим пример, когда время звучания аудио файла 5 минут с высоким качеством воспроизведения с частотой дискретизации 48000 Гц и глубиной кодирования 64 бит, то объем такого файла будет составлять:

\(V = 5 * 60 * 48000 * 64 = 921600000 бит,\)

что составляет 115200000 байт, или 115200 Кбайт, или 115,2 Мбайт.

Для стереозвука расчет объема производится по той же формуле, лишь только с той разницей, что нужно еще умножить на два, так как файл со стереозвуком обычно занимает в два раза больше места из-за того, что процесс дискретизации во время кодирования стереозвука проводится для каждой дорожки отдельно.

Самые распространенные методы аудио кодирования

Аудио информация кодируется обычно с применением методов двоичного кода, из них самыми популярными являются таблично-волновой метод (Wave-Table) и метод модуляции частоты (FM).

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Таблично-волновой метод (англ. Wave-Table) базируется на использовании предварительно разработанной таблицы, которая состоит из ячеек, содержащих все возможные звуки окружающей среды (птиц, животных, природы, музыкальных инструментов и так далее). Они представлены в виде цифровых кодов, каждый из них имеет свою определенную частоту, высоту, глубину, длительность и другие звуковые параметры. Благодаря тому, что образцы представляют собой реальные существующие звуки, воспроизводимый звук будет достаточно высококачественным, и сильно напоминать звуки живых инструментов.

Распространенные форматы аудио файлов

Аудио файлы бывают различных форматов. Рассмотрим самые распространенные из них:

Источник

Учитель информатики

Сайт учителя информатики. Технологические карты уроков, Подготовка к ОГЭ и ЕГЭ, полезный материал и многое другое.

Кодирование звуковой информации

Информатика. 10 класса. Босова Л.Л. Оглавление

§ 16. Кодирование звуковой информации

16.1. Звук и его характеристики

Звук — это распространяющиеся в воздухе, воде или другой среде волны с непрерывно меняющейся амплитудой и частотой (рис. 3.12).

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

Рис. 3.12. Звуковая волна

На практике вместо абсолютной используют относительную силу (уровень) звука, измеряемую в децибелах (дБ). Вот некоторые значения уровня звука:

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

Частота определяется как количество колебаний в секунду и выражается в герцах (Гц). Чем больше частота, тем выше звук, и наоборот. Человек способен слышать звук в широком частотном диапазоне, но важное для жизни значение имеют только звуки от 125 до 8000 Гц.

Например, звуковые волны в диапазоне 500-4000 Гц соответствуют человеческому голосу. Звучание детского голоса, пение птиц, шёпот относятся к высоким частотам. Звук контрабаса, рычание зверей, раскаты грома — к низким.

16.2. Понятие звукозаписи

Звукозапись — это процесс сохранения информации о параметрах звуковых волн.

Способы записи звука разделяются на аналоговые и цифровые. При аналоговой записи на носителе размещается непрерывный «слепок» звуковой волны. Так, на грампластинке пропечатывается непрерывная канавка, изгибы которой повторяют амплитуду и частоту звука.

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

Аналоговый способ записи звука

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

Цифровой способ записи звука

16.3. Оцифровка звука

Чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму. Для этого его подвергают временной дискретизации и квантованию: параметры звукового сигнала измеряются не непрерывно, а через определённые промежутки времени (временная дискретизация); результаты измерений записываются в цифровом виде с ограниченной точностью (квантование).

Вообще говоря, в компьютер приходит не сам звук, а электрический сигнал, снимаемый с какого-либо устройства: например, микрофон преобразует звуковое давление в электрические колебания, которые в дальнейшем и обрабатываются.

Если записывается стереозвук (ведётся двухканальная запись), то оцифровке подвергается не один электрический сигнал, а сразу два и, следовательно, количество сохраняемой цифровой информации удваивается.

Сущность временной дискретизации заключается в том, что аналоговый звуковой сигнал разбивается на отдельные маленькие временные участки и для каждого такого участка устанавливается определённая величина интенсивности звука (рис. 3.13). Другими словами, через какие-то промежутки времени мы измеряем уровень аналогового сигнала. Количество таких измерений за одну секунду называется частотой дискретизации.

Частота дискретизации — это количество измерений громкости звука за одну секунду.

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

Рис. 3.13. Временная дискретизация звукового сигнала (А(t) — амплитуда, t — время)

Частота дискретизации измеряется в герцах (Гц) и килогерцах (кГц). 1 кГц = 1000 Гц. Частота дискретизации, равная 100 Гц, означает, что за одну секунду проводилось 100 измерений громкости звука.

Качество звукозаписи зависит не только от частоты дискретизации, но также и от глубины кодирования звука.

Глубина кодирования звука или разрешение — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.

В результате измерений звукового сигнала (см. рис. 3.13) на каждой его «ступеньке» будет получено некоторое значение громкости, при этом все результаты измерений будут лежать в некотором диапазоне.

Пусть под запись одного результата измерения громкости в памяти компьютера отведено n бит. Вы знаете, что это позволяет закодировать ровно 2 n разных результатов измерений. Так, при n = 8 можно закодировать 256 разных результатов измерений громкости звука. Поэтому весь диапазон, в котором могут находиться результаты измерений громкости звука, можно разбить на 256 разных поддиапазонов — уровней громкости звука, каждому из которых присвоить свой уникальный код. После этого каждый имеющийся результат измерений громкости звука можно соотнести с некоторым поддиапазоном, в который он попадает, и кодировать его номером (кодом) соответствующего уровня громкости.

В зависимости от ситуации на практике используются разные значения частоты дискретизации и глубины кодирования (табл. 3.13).

Таблица 3.13

Примеры параметров оцифровки звука

что такое глубина кодирования звука. Смотреть фото что такое глубина кодирования звука. Смотреть картинку что такое глубина кодирования звука. Картинка про что такое глубина кодирования звука. Фото что такое глубина кодирования звука

Пример. Оценим объём звукового стереоаудиофайла с глубиной кодирования 16 бит и частотой дискретизации 44,1 кГц, который хранит звуковой фрагмент длительностью звучания 15 секунд.

Объём такого звукового фрагмента равен:

2 (канала) • 16 бит • 44 100 Гц • 15 с = 2 646 000 байт ≈ 2 584 Кбайта.

Увеличивая частоту дискретизации и глубину кодирования, можно более точно сохранить и впоследствии восстановить форму звукового сигнала. При этом объём сохраняемых данных будет увеличиваться.

Важно понимать, каких параметров оцифровки достаточно, чтобы сохраняемый звук был достаточно близок к исходному, а содержащий его файл имел минимально возможный объём. В начале 30-х годов прошлого века было установлено, что это возможно, если частота временной дискретизации будет в два раза выше максимальной частоты измеряемого сигнала.

В 1928 году американский учёный Гарри Найквист высказал утверждение, что частота дискретизации должна быть в два или более раза выше максимальной частоты измеряемого сигнала. В 1933 году наш соотечественник В. А. Котельников и независимо от него американец Клод Шеннон в 1949 году сформулировали и доказали теорему, более сильную чем утверждение Найквиста, о том, при каких условиях и как по дискретным значениям можно восстановить форму непрерывного сигнала.

САМОЕ ГЛАВНОЕ

Звук — это распространяющиеся в воздухе, воде или другой среде волны с непрерывно меняющейся амплитудой и частотой.

Чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму. Для этого его подвергают временной дискретизации и квантованию: параметры звукового сигнала измеряются не непрерывно, а через определённые промежутки времени (временная дискретизация); результаты измерений записываются в цифровом виде с ограниченной точностью (квантование).

Таким образом, при оцифровке звука искажение сохраняемого сигнала происходит дважды: во-первых, при дискретизации теряется информация об истинном изменении звука между измерениями, а во-вторых, при квантовании сохраняются не точные, а близкие к ним дискретные значения.

Объём оцифрованного звукового фрагмента в битах находится как произведение частоты дискретизации в Гц, глубины кодирования звука в битах, длительности звучания записи в секундах и количества каналов.

Вопросы и задания

1. Каким образом происходит преобразование непрерывного звукового сигнала в дискретный цифровой код?

2. Как частота дискретизации и глубина кодирования влияют на качество цифрового звука?

3. Производится четырёхканальная (квадро) звукозапись с частотой дискретизации 32 кГц и 32-битным разрешением. Запись длится 4 минуты, её результаты заносятся в файл, сжатие данных не производится. Определите приблизительно размер полученного файла (в мегабайтах). В качестве ответа укажите ближайшее к размеру файла целое число, кратное 10.

4. Музыкальный фрагмент был записан в формате моно, оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла — 49 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате стерео (двухканальная запись) и оцифрован с разрешением в 4 раза выше и частотой дискретизации в 3,5 раза меньше, чем в первый раз. Сжатие данных не производилось. Укажите в мегабайтах размер файла, полученного при повторной записи.

5. Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 32 секунды. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 3 раза выше и частотой дискретизации в 3 раза выше, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б. Пропускная способность канала связи с городом Б в 2 раза выше, чем канала связи с городом А. Сколько секунд длилась передача файла в город Б?

6. Музыкальный фрагмент был оцифрован и записан в виде файла без использования сжатия данных. Получившийся файл был передан в город А по каналу связи за 96 секунд. Затем тот же музыкальный фрагмент был оцифрован повторно с разрешением в 4 раза выше и частотой дискретизации в 3 раза ниже, чем в первый раз. Сжатие данных не производилось. Полученный файл был передан в город Б за 16 секунд. Во сколько раз пропускная способность канала связи с городом Б больше пропускной способности канала связи с городом А?

7. В сети Интернет найдите информацию о записи музыкальных произведений в формате MIDI. Почему запись звука в этом формате считают аналогичной векторному методу кодирования графических изображений?

Дополнительные материалы к главе смотрите в авторской мастерской.

Оглавление
§ 15. Кодирование графической информации

§ 16. Кодирование звуковой информации

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *