древесина какая ткань у растений

Проводящие ткани

Запомните, чтобы глубоко изучить любую науку, нужно восхищаться ей, уметь удивляться и проявлять любопытство в этой сфере. В ботанике это можно делать самыми разными путями: вы можете посетить ботанический сад, или, к примеру, приобрести микроскоп и рассматривать ткани и органы растений, самостоятельно приготавливая микропрепараты.

Это действительно важно, поэтому я останавливаюсь на этом. Сам я получаю и всегда призываю своих учеников получать искреннее удовольствие от погружения в науку. Надеюсь, что и вы разделите эту радость новых интересных знаний, я приложу к этому все усилия. Итак, начнем изучать проводящие ткани.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Проводящие ткани можно сравнить с кровеносной системой человека, которая пронизывает весь наш организм, доставляя питательные вещества к клеткам и удаляя продукты обмена веществ из них. Как уже было сказано, эти ткани служат для передвижения по организму растения растворенных питательных веществ. Имеется два направления тока: от корней к листьям (восходящий ток) и от листьев к корням (нисходящий ток).

Несмотря на то, что настоящие проводящие ткани впервые появились у папоротникообразных, но у мхов в наличии имеются водоносные клетки, благодаря которым они могут накапливать воду, превышающую массу самого сфагнума во 20-25 раз. По этой причине во время Первой мировой войны мох сфагнум использовали в качестве перевозочного материала. Кроме того, он обладает бактерицидными свойствами.

В состав и ксилемы, и флоэмы входят как живые, так и мертвые клетки. Однако отметим, что в ксилеме мертвые клетки преобладают.

Ксилема (древесина)

Эволюционно наиболее древние структуры. Представлены прозенхимными (вытянутые, с заостренными концами), мертвыми клетками. Через них осуществляется передвижение и фильтрация растворов из нижележащей трахеиды в вышележащую. Их одревесневшая утолщенная клеточная стенка имеет разнообразные формы: пористую, спиралевидную, кольчатую.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Длинные трубки, представляющие собой слияние отдельных мертвых клеток «члеников» в единый «сосуд». Ток жидкости идет из нижележащих отделов в вышележащие благодаря отверстиям (перфорациям) между клетками, составляющими сосуд. Так же, как и у трахеид, утолщения клеточных стенок у сосудов бывает самых разных форм.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Во время роста растения проводящие ткани также претерпевают морфологические изменения. Изначальная длина сосуда меняется, благодаря своему строению он растягивается и обеспечивает ток воды и минеральных солей.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Полагают, что эволюционно эти волокна берут начало от трахеид. Они не проводят воду, имеют более узкий просвет и отличаются хорошо выраженной клеточной стенкой, которая придает ксилеме механическую прочность.

Эти клетки составляет обкладку вокруг сосуда, имеют одревесневшие оболочки с порами, которым соответствуют окаймленная пора со стороны сосуда. То есть сюда из сосуда могут поступать органические вещества и формировать запасы, которые в дальнейшем пригодятся растению.

Флоэма (луб)

Клетки-спутницы (сопровождающие клетки) также заслуживают нашего особого внимания. Они примыкают к боковым стенкам ситовидных трубок, из этих клеток через перфорации (поры) АТФ и нуклеиновые кислоты попадают в ситовидные трубки, создавая нисходящий ток. Таким образом, клетки-спутницы контролируют деятельность ситовидных трубок.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Пронизывают флоэму, придавая ей опору. Часть клеток отмирает, что характерно для данной группы тканей.

Обеспечивают радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других прилежащих тканей.

По мере старения ситовидные трубки закупориваются каллозой (образующей так называемое мозолистое тело) и затем отмирают. Отмершие ситовидные трубки постепенно сплющиваются давящими на них соседними живыми клетками.

Ниже вы найдете продольный срез тканей растения, изучите его.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Жилка

Ключевой момент: между ксилемой и флоэмой располагается прослойка камбия. Этот факт обуславливает возможность образования дополнительного объема ксилемы и флоэмы в будущем, для дальнейшего роста и увеличения в объеме пучка. Без камбия невозможно было бы утолщения органа. Такие пучки можно обнаружить во всех органах двудольных растений.

Основное отличие в том, что между ксилемой и флоэмой отсутствует камбий. Невозможно образования новых элементов проводящих тканей, ксилемы и флоэмы. Закрытые сосудисто-волокнистые пучки встречаются в стеблях однодольных растений.

Верхняя часть жилки представлена ксилемой, нижняя флоэмой. Вокруг пучка в виде кольца располагается механическая ткань – склеренхима. Над пучком и под ним механическая ткань – колленхима – выполняет опорную функцию.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Как вода поднимается от корней к листьям, против силы тяжести?

Запомните, что вода и растворенные в ней минеральные соли поступают в растение благодаря слаженной работе двух концевых двигателей: нагнетающего корневого и присасывающего листового.

Силу, поднимающую воду вверх по сосудам, называют корневым давлением. Величина его обычно составляет от 30 до 150 кПа. В основе этого явления лежит осмос: клетки корня выделяют минеральные и органические вещества в сосуды, что создает более высокое давление, чем в почвенном растворе, и последний начинает притягиваться в сосуды.

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Древесина какая ткань у растений

Ткани возникли у высших растений в связи с выходом на сушу и наибольшей специализации достигли упокрытосеменных, у которых их выделяют до 80 видов. Важнейшие ткани растений:

Ткани могут быть простыми и сложными. Простые ткани состоят из одного вида клеток (например, колленхима, меристема), а сложные — из различных по строению клеток, выполняющих кроме основных и дополнительные функции (эпидерма, ксилема, флоэма и др.).

Клетки образовательной ткани тонкостенные, многогранные, плотно сомкнутые, с густой цитоплазмой, с крупным ядром и очень мелкими вакуолями. Они способны делиться в разных направлениях.

По происхождению меристемы бывают первичные и вторичные. Первичная меристема составляет зародыш семени, а у взрослого растения сохраняется на кончике корней и верхушках побегов, что делает возможным их нарастание в длину. Дальнейшее разрастание корня и стебля по диаметру (вторичный рост) обеспечивается вторичными меристемами — камбием и феллоге-ном. По расположению в теле растения различают верхушечные (апикальные), боковые (латеральные), вставочные (интеркаляр-ные) и раневые (травматические) меристемы.

Покровные ткани располагаются на поверхности всех органов растения. Они выполняют главным образом защитную функцию — защищают растения от механических повреждений, проникновения микроорганизмов, резких колебаний температуры, излишнего испарения и т. п. В зависимости от происхождения различают три группы покровных тканей —эпидермис, перидерму и корку.

Эпидермис (эпидерма, кожица) — первичная покровная ткань, расположенная на поверхности листьев и молодых зеленых побегов (рис. 8.1). Она состоит из одного слоя живых, плотно сомкнутых клеток, не имеющих хлоропластов. Оболочки клеток обычно извилистые, что обусловливает их прочное смыкание. Наружная поверхность клеток этой ткани часто одета кутикулой или восковым налетом, что является дополнительным защитным приспособлением. В эпидерме листьев и зеленых стеблей имеются устьица, которые регулируют транспирацию и газообмен растения.

Перидерма — вторичная покровная ткань стеблей и корней, сменяющая эпидермис у многолетних (реже однолетних) растений (рис. 8.2.). Ее образование связано с деятельностью вторичной меристемы —феллогена (пробкового камбия), клетки которого делятся и дифференцируются в центробежном направлении (наружу) в пробку (феллему), а в центростремительном, (внутрь) — в слой живых паренхимных клеток (феллодерму). Пробка, феллоген и феллодерма составляют перидерму.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Рис. 8.1. Эпидерма листа различных растений: а— хлорофитум; 6 — плющ обыкновенный: в — герань душистая; г — шелковица белая; 1— клетки эпидермы; 2 — замыкающие клетки устьиц; 3 — устьичная щель.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Рис 8.2. Перидерма стебля бузины (а — поперечный разрез побега, б — чечевички): I— выполняющая ткань; 2 — остатки эпидермы; 3 — пробка (феллема); 4 — феллоген; 5 — феллодерма.

Клетки пробки пропитаны жироподобным веществом — суберином —и не пропускают воду и воздух, поэтому содержимое клетки отмирает и она заполняется воздухом. Многослойная пробка образует своеобразный чехол стебля, надежно предохраняющий растение от неблагоприятных воздействий окружающей среды. Для газообмена и транспирации живых тканей, лежащих под пробкой, в последней имеются особые образования — чечевички; это разрывы в пробке, заполненные рыхло расположенными клетками.

Корка образуется у деревьев и кустарников на смену пробке. В более глубоко лежащих тканях коры закладываются новые участки феллогена, формирующие новые слои пробки. Вследствие этого наружные ткани изолируются от центральной части стебля, деформируются и отмирают, На поверхности стебля постепенно образуется комплекс мертвых тканей, состоящий из нескольких слоев пробки и отмерших участков коры. Толстая корка служит более надежной защитой для растения, чем пробка.

Проводящие ткани обеспечивают передвижение воды и растворенных в ней питательных веществ по растению. Различают два вида проводящей ткани — ксилему (древесину) и флоэму (луб).

Ксилема —это главная водопроводящая ткань высших сосудистых растений, обеспечивающая передвижение воды с растворенными в ней минеральными веществами от корней к листьям и другим частям растения (восходящий ток). Она также выполняет опорную функцию. В состав ксилемы входят трахеиды и трахеи (сосуды) (рис. 8.3), древесинная паренхима и механическая ткань.

Трахеиды представляют собой узкие, сильно вытянутые в длину мертвые клетки с заостренными концами и одревесневшими оболочками. Проникновение растворов из одной трахеиды в другую происходит путем фильтрации через поры — углубления, затянутые мембраной. Жидкость по трахеидам протекает медленно, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственным проводящим элементом ксилемы. У покрытосеменных растений наряду с трахеидами имеются сосуды.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Рис 8.3. Элементы ксилемы (а) и флоэмы (6): 1—5 — кольчатая, спиральная, лестничная и пористая (4, 5) трахеи соответственно; 6 — коль чатая и пористая трахеиды; 7 — ситовидная трубка с клеткой-спутницей.

Трахеи (сосуды) —это полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках на поперечных стенках образуются сквозные отверстия — перфорации, или эти стенки полностью разрушаются, благодаря чему скорость тока растворов по сосудам многократно увеличивается. Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность. В зависимости от характера утолщения оболочек различают трахеи кольчатые, спиральные, лестничные и др. (см. рис. 8.3).

Флоэма проводит органические вещества, синтезированные в листьях, ко всем органам растения (нисходящий ток). Как и ксилема, она является сложной тканью и состоит из ситовидных трубок с клетками-спутницами (см. рис. 8.3), паренхимы и механической ткани. Ситовидные трубки образованы живыми клетками, расположенными одна над другой. Их поперечные стенки пронизаны мелкими отверстиями, образующими как бы сито. Клетки ситовидных трубок лишены ядер, но содержат в центральной части цитоплазму, тяжи которой через сквозные отверстия в поперечных перегородках проходят в соседние клетки. Ситовидные трубки, как и сосуды, тянутся по всей длине растения. Клетки-спутницы соединены с члениками ситовидных трубок многочисленными плазмодесмами и, по-видимому, выполняют часть функций, утраченных ситовидными трубками (синтез ферментов, образование АТФ).

Ксилема и флоэма находятся в тесном взаимодействии друг с другом и образуют в органах растения особые комплексные группы — проводящие пучки.

Механические ткани обеспечивают прочность органов растений. Они составляют каркас, поддерживающий все органы растений, противодействуя их излому, сжатию, разрыву. Основными характеристиками строения механических тканей, обеспечивающими их прочность и упругость, являются мощное утолщение и одревеснение их оболочек, тесное смыкание между клетками, отсутствие перфораций в клеточных стенках.

Механические ткани наиболее развиты в стебле, где они представлены лубяными и древесинными волокнами. В корнях механическая ткань сосредоточена в центре органа.

В зависимости от формы клеток, их строения, физиологического состояния и способа утолщения клеточных оболочек различают два вида механической ткани: колленхиму и склеренхиму, (рис. 8.4).

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Колленхима представлена живыми паренхимными клетками с неравномерно утолщенными оболочками, делающими их особенно хорошо приспособленными для укрепления молодых растущих органов. Будучи первичными, клетки колленхимы легко растягиваются и практически не мешают удлинению той части растения, в которой находятся. Обычно колленхима располагается отдельными тяжами или непрерывным цилиндром под эпидермой молодого стебля и черешков листьев, а также окаймляет жилки в листьях двудольных. Иногда колленхима содержит хлоропласты.

Склеренхима состоит из вытянутых клеток с равномерно утолщенными, часто одревесневшими оболочками, содержимое которых отмирает на ранних стадиях. Оболочки склеренхимных клеток обладают высокой прочностью, близкой к прочности стали. Эта ткань широко представлена в вегетативных органах наземных растений и составляет их осевую опору.

Различают два типа склеренхимных клеток: волокна и склереиды. Волокна — это длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные или древесинные волокна). Склереиды — это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки вишни, сливы, абрикоса; они придают мякоти груш характерный крупчатый характер.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Рис 8.5. Паренхимные ткани: 1—3 — хлорофиллоносная (столбчатая, губчатая и складчатая соответственно); 4—запасающая (клетки с зернами крахмала); 5 — воздухоносная, или аэренхима.

Клетки ассимиляционной ткани содержат хлоропласты и выполняют функцию фотосинтеза. Основная масса этой ткани сосредоточена в листьях, меньшая часть — в молодых зеленых стеблях.

Источник

Ткани растений

Хлопковые, льняные, синтетические — это ткани, из которых люди шьют себе одежду. Она нужна им для красоты, защиты от холода и удобства. Из тканей, выполняющих разные задачи, «сшиты» и сложные существа, в том числе и преобладающая часть растений. У одноклеточных организмов всю работу делает одна клетка. У многоклеточных есть разные типы клеток: разной формы, лежащие близко друг к другу или расположенные рыхло, с большим количеством хлоропластов или совсем без органоидов, с омертвевшими утолщёнными оболочками. Из них и собраны ткани. Сегодня нам предстоит выяснить, что такое ткани растений, зачем они им нужны, какие виды тканей бывают и как они появились в результате эволюции.

Как появились ткани у растений? Понятие о ткани

С появлением в истории Земли многоклеточных существ появилась возможность дифференциации их клеток. Первые признаки их различий наблюдаются у колониальных протист, например у вольвокса, похожего на шар. Его наружные клетки, снабжённые жгутиками, решают необходимые для жизни проблемы: питания, фотосинтеза, движения и др. Другие клетки вольвокса способны к размножению и основанию новых колоний.

Тело многоклеточных зелёных, не прикреплённых к субстрату водорослей построено из цепочки однотипных клеток. У прикреплённых водорослей нижняя часть клеток лишилась хроматофор с хлорофиллом и стала ризоидами (нити для прикрепления к субстрату), клетки верхней части осуществляют функции получения питания и размножения. Продвинутые бурые водоросли имеют специальные группы клеток, осуществляющие функции опоры и защиты. В их талломе есть фотосинтезирующие, проводящие и запасающие клетки. Но водоросли ещё не имеют настоящих тканей и органов.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растенийРис. 1. Фотосинтезирующая ткань

Разнообразные сложные группы специализированных клеток появляются у высших наземных растений. Примитивные ткани имеют мхи, папоротники. Особенно развиты в этом плане цветковые растения. С выходом из воды им пришлось приспособиться ко многим вещам. Для сохранения влаги у них появилась кожица, для проведения веществ клетки объединились в трубки, в качестве защиты от ветра они приобрели опорные ткани. Став строго специализированными, многие клетки потеряли способность делиться. Поэтому у растений есть такие участки, где расположены молодые клетки, делящиеся и образующие новые ткани. От них зависит рост растения.

Ткани растений и всех живых организмов вообще — это комплексы из одинаковых или нескольких разных типов клеток, отвечающих за определённые функции. Если ткань состоит только из одинаковых клеток, то она называется простой, если она построена из нескольких разных клеток, то она именуется сложной. Как и ткани нашей одежды — одни защищают от холода, другие от дождя, третьи согревают, четвёртые смягчают прикосновения, так и у растений одна группа клеток защищает, другая проводит вещества, третья придаёт им прочность и др.

Какие основные типы тканей встречаются у растений?

Учёные-гистологи разделили все ткани по следующим признакам:

Опираясь на эти признаки, они выделили у растений 6 видов тканей: основные, выделительные, покровные, образовательные, проводящие и механические.

Образовательные растительные ткани

Их ещё называют меристемами. Они состоят из тонкостенных, мелких клеток с крупным ядром, содержат митохондрии, пропластиды и мелкие вакуоли. Их клетки делятся митотически и обеспечивают развитие и рост растений. Когда клетка удваивается, одна из них сохраняет способность к делению и остаётся меристематической, другая изменяется и становится частью какой-либо ткани. Меристемы подразделяют на две группы:

Меристемы у растений находятся в определённых участках тела. По этой причине их делят на несколько групп:

Покровные ткани растений

Находятся снаружи, отграничивают внутреннюю часть растения от внешней среды, выполняя роль барьера. Главные функции покровной ткани:

— предохранять органы растения от солнечных ожогов, перегрева и высыхания, от повреждений и попадания микробов;

— участвовать в обмене веществ между внешней средой и организмом (всасывание, газообмен и испарение).

Среди покровных тканей выделяют первичные и вторичные:

Эпидерма — сложная ткань, помимо основных клеток в ней есть и другие. Одни из них составляют трихомы, или волоски. Встречаются одноклеточные, многоклеточные, реже чешуйчатые или ветвящиеся трихомы. Волоски снижают испарение, помогают растению цепляться за опоры, защищают от перегрева. Железистые трихомы накапливают и выделяют различные вещества.

Особенности строения покровной ткани в том, что в эпидерме растений есть группа специализированных клеток, образующих устьица. Через них происходит испарение воды и газообмен растений.

Паренхима, или основная ткань растений

Паренхима заполняет пространство внутри органов растения, располагаясь между другими тканями. Клетки основной ткани крупные, тонкостенные, живые, чаще округлые. В зависимости от того, какую работу они выполняют, существует несколько видов основных тканей.

Механические (опорные) ткани

Благодаря давлению наполненных вакуолей большинство растительных клеток уже имеет опору. Это очень важно для молодых растений. Но по мере роста у наземных видов возникает необходимость в развитии более прочной «арматуры». Им нужен надёжный «скелет», удерживающий их в воздушной среде. В качестве такой «арматуры» выступают специализированные механические ткани, состоящие из клеток с толстыми стенками. В корне механическая ткань располагается по большей части в центре, обеспечивая прочность при растяжении. В стеблях трав — ближе к эпидерме, способствуя упругости и гибкости органа.

В зависимости от способа нарастания стенок клеток и их формы различают два типа механической ткани: склеренхиму и колленхиму.

Выделительные ткани растений

Всем клеткам нужно удалять вредные и лишние вещества. У животных они выводятся наружу, у растений чаще накапливаются внутри в вакуолях, в полостях межклетников или в мёртвых клетках. У животных есть разные типы выделительной системы: трубочки, почки и др. У растений существуют только отдельные структуры для выделения веществ, они бывают внутренние и наружные. Основные свойства этих тканей — удаление и выведение веществ.

Проводящие ткани растений

Водоросли впитывают минералы и воду всеми клетками тела. Наземным растениям нужна «водопроводная» система, чтобы переправлять органические вещества из листьев ко всем клеткам организма и воду с растворёнными химическими элементами вверх от корня. Такая система появилась у них с выходом на сушу — это проводящие ткани. Существует два вида проводящих тканей растений: древесина (ксилема) и луб (флоэма). По ксилеме осуществляется ток вверх от корня, по флоэме — от листьев.

В растении проводящие ткани (ксилема и флоэма) образуют особые структуры — проводящие пучки.

Источник

Строение дерева. От клеток до корней

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растенийСтроение растений мы изучали еще в школе. В этой статьей мы решили напомнить, что из себя представляет дерево, и рассказать о каждой из его частей: клетках и тканях, древесине и коре, ветвях и ветках, листьях и корнях.

Анатомия дерева

Деревья – это древесные растения большого размера. Они обладают уникальными свойствами, позволяющими им являться доминирующим видом царства растений во многих странах мира. В основе ухода за деревьями (древоводства) лежит глубокое понимание процессов роста и развития деревьев. Только с учетом данного принципа можно профессионально осуществлять уход за деревьями.

Клетки и ткани

Для всех живых организмов характерна общая организационная структура, состоящая из клеток, тканей и органов. Клетки – это основные «строительные б локи» данной структуры. У растений новые клетки образуются путем деления существующих. Этот процесс проходит в специальных образовательных тканях – меристемах.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Клетки:
1 – Молодая клетка с плазмой и ядром 2 – Рост клетки 3 – Зрелая клетка с большой вакуолью

После деления клетки проходят этап дифференцировки, во время которого изменяется их структура и они приобретают способность к различным специфическим функциями. Клетки с аналогичной структурой и функциями объединяются в ткани.

Затем из тканей формируются органы, которых у растений шесть: листья, стволы, корни, почки, цветы и плоды. И, наконец, органы образуют полностью функциональные организмы – деревья.

Существует два основных типа меристематической ткани:

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Поперечное сечение ствола дерева: 1 – Сердцевина 2 – Ядро 3 – Сердцевинный луч 4 – Заболонь 5 – Камбий 6 – Флоэма 7 – Феллоген 8 – Кора

У деревьев есть две вторичные меристемы: камбий и феллоген.

Когда дерево срубают и рассматривают в поперечном сечении, в ксилеме видны годичные кольца. В зонах умеренного климата данные кольца соответствуют годовому образованию ксилемы в камбии. Они имеют форму круга, так как от носительный размер и плотность сосудистой ткани изменяются в течение вегетационного периода. По мере приближения к концу вегетационного периода клетки становятся меньше в диаметре.

Таким образом, благодаря резкой разнице между клетками, образованными в начале сезона (ранняя древесина), и клеткам, сформированными позднее (поздняя древесина), индивидуальный годовой прирост становится различимым.

В отношении древесины хвойные и лиственные породы значительно отличаются друг от друга. Кроме того, среди лиственных деревьев выделяются кольцесосудистые (например, Дуб (Quercus), Ясень (Fraxinus)) и рассеяннососудистые виды (например, Липа (Tilia), Бук (Fagus)).

В центре ствола формируется ядровая древесина. Она окружена живой заболонью. Не все проводящие элементы ксилемы служат для передвижения воды. За это отвечает только живая и активная ткань заболони, тогда как другая часть ксилемы, расположенная ближе к центру, является нефункциональной. Такие мертвые клетки образуют ядро – непроводящую ткань, цвет которой темнее, чем у заболони.

Флоэма отвечает за перемещение сахара от листьев к другим частям растения. Кроме флоэмы и ксилемы, сосудистая система дерева включает в себя лучевые клетки. Лучи расходятся в радиальном направлении от центра поперечного сечения через флоэму и ксилему и служат для транспортировки сахаров и их компонентов вдоль ствола. Они помогают ограничивать распространение гнили по древесной ткани и хранить запасы питательных веществ в виде крахмала.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Поперечный разрез ствола

Внешняя часть ветвей и ствола деревьев называется корой. Это защитная ткань, поддерживающая температуру внутренней части ствола, предохраняющая растения от повреждений и уменьшающая потерю воды. Кора состоит из нефункциональной флоэмы, пробковой ткани и мертвых клеток. Для минимизации потери воды ее клетки пропитаны воском и маслами.

Газообмен между живыми тканями дерева и атмосферой происходит с помощью чечевичек, маленьких пор в коре.

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

Перидерма — защитная ткань

древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растенийИменно она защищает деревья от воздействия окружающей среды. Что представляет собой перидерма? Как формируется? Как выполняет свои защитные функции? Чем отличается перидерма разных пород?

    Ветви и ветки

    Верхушечная почка является наиболее сильной на ветви или ветке и располагается на конце побега. Она контролирует развитие вторичных почек с помощью гормонов. Обычно вторичные почки не развиваются и остаются в спящем состоянии. Как правило, верхушечная почка является наиболее активной на каждой ветви или ветке и контролирует развитие пазушных почек на том же побеге, которые часто бывают спящими: их рост сдерживается апикальным доминированием терминальной почки.

    древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

    Побеги с доминирующей верхушечной почкой бывают моноподиальными или симподиальными.

    Побеги без апикального доминирования являются ложнодихотомическими.

    древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

    Некоторые побеги развивают придаточные почки, которые формируются вдоль стволов и корней. Они возникают, как правило, в ответ на потерю обычных по чек в результате действия регуляторов роста.

    древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

    Ежегодный прирост: 1 – 1 год; 2 – 2 года; 3 – 3 года

    Листья и почки образуются из немного утолщенной части ветки, которая называется узел. Междоузлие – это зона между узлами. На ветке видны листовые рубцы и рубцы верхушечной почки. Они помогают измерять ежегодное удлинение ветки и общий прирост. По своей структуре и функции каждая ветвь дерева сопоставима со всей кроной. Но в то же время ветви – это не просто отростки ствола.

    Наоборот, ветви характеризуются уникальной формой присоединения к нему, которая имеет крайне важное значение для практической деятельности в сфере ухода за деревьями, например, для обрезки.

    Ветви прочно крепятся к древесине и коре, расположенной под ветвями, но над ними крепление более хрупкое. Годовой прирост слоев ткани в зоне соединения ветви и ствола хорошо заметен и формируется большую часть времени. Плечо или выпуклость вокруг основания ветви называется воротником. В точке разветвления ткани ветви и ствола расширяются на встречу друг другу. В результате, кора приподнимается, образовывая гребень ветви. Если кора в районе разветвления окружена древесиной, она называется включенной корой. Это еще больше ослабляет развилку ствола, поскольку нормальное присоединение ветви к стволу не формируется.

    Смотрите также:

    Правильная обрезка деревьев

    древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

    Рис.1 Правильная обрезка

    В этой статье мы поговорим об особенностях обрезки у основания ветви и обрезки, параллельной стволу. Вы узнаете, почему в наше время специалисты отдают предпочтение именно первому способу обрезки деревьев.

      Листья

      Листья отвечают за производство питательных веществ для дерева. Они содержат хлоропласт, наполненный зеленым пигментом – хлорофиллом, с помощью которого происходит фотосинтез. Еще одна функция листьев – транспирация, представляющая собой выведение воды через листву посредством испарения.

      древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

      Строение листа: 1 – Устьице 2 – Кутикула 3 – Эпидермис 4 – Клетки палисадной паренхимы
      5 – Клетки губчатой паренхимы

      Площадь листьев достаточно большая, что позволяет им поглощать солнечный свет и углекислый газ, необходимые для фотосинтеза.

      Внешняя поверхность листа покрыта воскообразным слоем, который называется кутикула. Она служит для минимизации дессикации (высушивания) листа.

      Испарение воды и газообмен контролируют устьица – маленькие отверстия на поверхности листа.

      Лист обладает развитой системой проводящих тканей, включающей в себя вены, или капиллярные каналы. Вены состоят из тканей как флоэмы, так и ксилемы, и отвечают за транспортировку воды и жизненно необходимых веществ, а также за перенос питательных веществ, которые вырабатываются в клетках листьев, к остальным органам дерева.

      древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

      Точка отделения листьев выполняет две функции:

      Осенью изменение цвета листвы листопадных деревьев связано с разложением хлорофилла, позволяющим проявиться другим пигментам, содержащимся в листьях. Сокращение продолжительности светового дня в сочетании с холодными ночами приводит к усиленному накоплению сахаров и замедляет выработку хлорофилла. Этот процесс и позволяет другим пигментам, в том числе антоцианинам (красный и пурпурный) и каротиноидам (желтый, оранжевый и красный), проявиться.

      Корни

      Корни деревьев выполняют четыре основные функции:

      древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

      Окончание корня:
      1. Одревесневший корень
      2. Корневой волосок
      3. Корневой кончик
      4. Корневой чехлик

      Всасывающие корни представляют собой небольшие, волокнистые участки ткани, растущей на окончаниях основных одревесневших корней. У них есть эпидермальные клетки, модифицированные в корневые волоски, которые помогают поглощать воду и минеральные вещества. Корневые волоски живут совсем не долго (3–4 недели весной) и значительно активизируют способность к поглощению веществ с наступлением вегетационного периода весной.

      Что касается корневых кончиков, они содержат меристему, где клетки делятся и растут в длину.

      Корни растут там, где они могут найти воздух и кислород. Большая часть всасывающих корней находится на расстоянии 30 см от поверхности почвы. Также рядом с поверхностью располагаются горизонтальные боковые корни.

      Якорные корни растут вертикально по направлению вниз от боковых корней, обеспечивая надежную фиксацию дерева и увеличивая глубину освоения почвы корневой системой.

      древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

      Корневая система:
      1 – Стержневая корневая система 2 – Мочковатая корневая система 3 – Поверхностная корневая система

      Смотрите также:

      Корневые симбиозы. Микориза

      древесина какая ткань у растений. Смотреть фото древесина какая ткань у растений. Смотреть картинку древесина какая ткань у растений. Картинка про древесина какая ткань у растений. Фото древесина какая ткань у растений

      Грибы внутри тканей корня

      Сожительство микоризы и растения, как правило, бывает чрезвычайно взаимовыгодно, что обусловлено объединением имеющихся у них различных способностей.

      Появление первого русскоязычного издания справочника Европейского специалиста по уходу за деревьями (European Tree Worker) в России стало возможным благодаря сотрудничеству НПСА «ЗДОРОВЫЙ ЛЕС» (Россия) с ведущим немецким учебным заведением в области подготовки специалистов по уходу за деревьями – Нюрнбергской школы ухода за деревьями (Германия).

      Источник

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *