если событие не может произойти ни при каких условиях его вероятность равна
Если событие не может произойти ни при каких условиях его вероятность равна
Событиями являются и результаты различных опытов, наблюдений и измерений.
1) из ящика с разноцветными шарами наугад вытаскивают белый шар;
2) на один из приобретенных лотерейных билетов выпал выигрыш;
3) при бросании игральной кости выпала цифра 6.
События делятся на достоверные, случайные и невозможные.
Достоверным называется событие, если оно обязательно произойдет в данном испытании.
Случайным называется событие, если оно может произойти, но может и не произойти в данном испытании.
Невозможным называется событие, если оно не может произойти в данном испытании.
За единицу принимают вероятность достоверного события, а вероятность невозможного события считают равной нулю. Тогда вероятность Р любого события А удовлетворяет неравенству:
Несовместными называются события, если появление одного из них
Пример. Опыт состоит в подбрасывании монеты, событие А – выпадение орла, событие В – выпадение решки. Эти события несовместны, равновозможны и единственно возможны.
Равновозможными называются события, если ни одно из них не является более возможным, чем другое.
Единственно возможными называются события, если в результате опыта хотя бы одно из них обязательно наступит. Говорят, что единственно возможные события образуют полную группу событий .
Рассмотрим классический метод определения вероятности некоторого случайного события. Пусть в результате некоторого опыта могут наступить события А1, А2, А3, …, Аn (элементарные исходы опыта), которые являются:
1)единственно возможными, т.е. в результате опыта хотя бы одно из них обязательно наступит;
2)несовместными, т.е. появление одного из них исключает появление всех остальных;
3)равновозможными, т.е. не существует никаких причин, в связи с которыми одно из событий появлялось бы чаще, чем остальные.
Пусть при появлении некоторых из этих событий наступает событие А. Обозначим число таких событий k (k≤n). А при появлении остальных (n-k) событий событие А не наступает. Говорят, что k событий (элементарных исходов), при которых появляется событие А, благоприятствуют событию А, а остальные (n-k) событий не благоприятствуют ему.
Вероятностью события А называется отношение числа k элементарных исходов, благоприятствующих этому событию, к общему числу элементарных исходов испытания n, если они равновозможны, несовместны и единственно возможны.